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Abstract—Along with the increasing prosperity of market
economy and the growth of online retail, express shipping
service (e.g. FedEx, UPS) is playing an increasingly important
role in our daily lives. A thorough understanding of the
network structure and the package traffic dynamics of large-
scale express shipping service network (ExpressNet) is essential
for performance evaluation, network optimization, and user
experience enhancement. Moreover, it would also be interesting
and helpful to investigate how express shipping service reflects
people’s daily lives. In this paper, we propose systematic work
to characterize and model the traffic dynamics in a nationwide
ExpressNet. We collect 16 million delivery traces over 4 months
in China, and examine its characteristics from a wide range of
perspective, including network structure, temporal and spatial
traffic dynamics, which provide important insights into express
companies to better understand the network performance. On
top of that, we develop an Extended Markov Model (EMM) to
capture the dynamics of package delivery process and further
predict the package delay, which is a major performance metric
that both customers and express companies are concerned
about. Data-based evaluation shows our model can achieve 91%

prediction accuracy.

I. INTRODUCTION

Due to the boom of online retail and increasing prosperity

of market economy, express shipping service has become a

major focus at the marketplace in recent years. For example,

it is estimated that more than 9.1 billion packages have been

delivered in 2013 through express shipping service network

(ExpressNet) of China, which creates direct income around

254 billion RMB [1].

However, explosion in the number of packages brings

new challenges to both package delivery companies and

customers [2]. From the perspective of express companies, in

order to provide better customer service, they need to design,

evaluate and optimize the highly dynamic ExpressNet to

help efficiently schedule the network resources [3]. On the

other hand, customers need their packages to be delivered

smoothly and timely. Although many delivery companies

offer day-definite shipping service nowadays [4], they cannot

provide accurate delivery time within a day beforehand and

the delivery time of most express shipping services could

even vary for a few days. With a better understanding and

prediction of the package delivery dynamics, customers are

able to estimate the shipping time more precisely and send

out their packages at the right time and with the least costs.

Motivated by the above reasons, in this paper, we propose

systematic work on characterizing and modeling package

dynamics in ExpressNet. To this end, we firstly measure and

characterize the temporal and spatial dynamics of express

packages delivered within China in consecutive 4 months.

After that, we model package delivery dynamics with an

Extended Markov Model (EMM) and predict the package

delay. In addition, we reveal some interesting correlations

between ExpressNet and the socio-economic conditions and

human behaviors, which can benefit the corresponding so-

ciological studies.

Our study is distinguished from prior work in three as-

pects. First, we focus on analyzing and evaluating large-scale

ExpressNet based on real data measurement. We design an

effective data crawling algorithm and build our own data set

using public package tracking data of Shunfeng Express, one

of the largest express shipping service companies in China1.

Such a data-driven design is more accurate and robust com-

pared with previous analytical works in ExpressNet [5] [6]

and the non-intrusive data collection method is flexible and

easy to be implemented by ordinary users and third-party

organizations for the purpose of research and evaluation.

Second, unlike previous works which are mainly targeted

on network structure design and optimization [7] [8] [9],

based up on a huge data set, this paper provides thorough

analysis of both temporal and spatial dynamics of package

traffic with fine granularity. Specifically, our measurements

and analyses provide hour-level time granularity and city-

level spatial granularity, which can help express companies

to better understand and further improve the performance of

ExpressNet. Finally, to the best of our knowledge, we firstly

propose a data-based model to predict package delivery

time, which is beneficial for both express companies and

1http://www.sf-express.com/us/en/.



customers. Intellectual contributions of our work include:

1) From the public database of Shunfeng Express, we

continuously collect package delivery traces for over

4 months and construct a data set including 16 million

single traces which covers 284 cities in China. Based on

the data set, we reconstruct the structure of ExpressNet,

which is crucial to understand the unique topology char-

acteristics and their influence on package dynamics.

2) We characterize several basic features of package dy-

namics in ExpressNet. More than 80% of packages are

generated by only 20% of nodes. In addition, nearly

87% of packages are delivered within 2 hops while

only 65.6% of packages follow the shortest path. We

also discuss and reveal the underlying reasons of the

observations.

3) The time-series of the whole traffic volume show ob-

vious diurnal characteristics and have a strong relation

with people’s daily activities. We further demonstrate

how the package delivery delay is largely dependent

on the randomness from these characteristics in both

temporal and spatial domains. The insights obtained

from the analysis can help express companies to further

understand the network performance.

4) We utilize the measurement analysis results to develop

the EMM to capture the package delivery dynamics.

Through large-scale data set based evaluation, EMM

shows high accuracy in package delay prediction.

The remainder of this paper is organized as follows. In

Section II, we describe the data set used in our work and

reconstruct the network structure. In Section III, we reveal

the fundamental features of package traffic dynamics on the

spatial and temporal scale. Then the EMM is developed to

capture the package delivery dynamics in Section IV. We

discuss past work in Section V and along with a conclusion

of this paper in Section VI.

II. PRELIMINARY

In this section, we first provide a quick sketch and

discussion of the collected data set. On top of that, we reveal

some structure features of ExpressNet, which are essential

for later analysis and modeling of the package dynamics.

A. Data Set Description

We collect the package tracking data from the open

website of Shunfeng Express that provides nationwide pack-

age delivery services in China. With hour-level temporal

granularity and city-level spatial granularity, such tracking

data can reveal the delivery trace and dynamics of the

package, including when and where the package is collected,

sorted, conveyed and delivered. Notice that the data trace

does not contain any private or sensitive information such

as the name or the contact number of the customer, the

exact location where the package is picked up, and etc.

Therefore, collecting and analyzing the data will not bring

in any privacy issues. In our work, we develop a specific

application that is able to crawl such package delivery traces

automatically. The collected data set contains 16 million

package traces from November 2012 to February 2013,

including 284 major cities throughout China.

There are also limitations of the data set. The recorded

time in each trace may not accurate due to the delay of

package scanning process. For example, packages arrived

early at a hub are probably scanned at a later time. In

order to estimate the possible errors, we sent out hundreds

of packages containing sensor nodes to obtain the ground

truth time and location information. The measurements show

that although the scanning time varies within a batch of

packages, the variance is small enough, usually less than an

hour, to be neglected in our analysis and modeling in this

paper.

B. ExpressNet Structure

In this part, we reveal the structure of ExpressNet by

analyzing the collected data traces in the view of network

science [10]. The results contribute to the understanding of

the topology characteristics and their influence on package

delivery process.

(a) On the topological scale

(b) On the geographical scale

Figure 1. ExpressNet structure



The ExpressNet structure abstracted from the traces is

shown in Figure 1. Nodes in Figure 1 represent cities in

collected traces, and edges represent delivery links between

two nodes. Figure 1(a) is the general view of ExpressNet

structure on the topological scale, where the degree of nodes

in the center is larger than that in the outer layer. Figure

1(b) shows the actual geographical location of ExpressNet

in China.

The ExpressNet we collected contains 284 nodes, 1253

edges and 10196 paths. Specifically, a path is a distinctive

package delivery route between the source node and the

corresponding destination node (node pair) which may have

many traces spanning over the observed time period. The

average node degree is 8.824 and the average path length is

2.704.

III. CHARACTERIZING PACKAGE TRAFFIC DYNAMICS

In this section, we study the fundamental characteristics

of the package traffic in ExpressNet. We first measure the

traffic volume from both spatial and temporal domains and

then analyze the package delay. The insights gained from the

interesting traffic characteristics are not only of significant

importance for service management, schedule planning and

network optimization, but also can benefit the customers’

daily lives.

A. Traffic Volume Distribution

Traffic volume is defined as the number of packages that

counted from the collected package traces. Figure 2(a) shows

the cumulative distribution function (CDF) of traffic volume

on different nodes. It can be seen that nearly 20% of nodes

own 80% of traffic volume, indicating that traffic volume in

ExpressNet is dominated by a small part of nodes. Figure

2(b) shows the traffic volume distribution on different path

length. The single-hop path bears more than 40% of the

whole traffic volume. Besides, almost 20% of traffic volume

belongs to the path with the length of 0, which reveals the

importance of intra-city package traffic.
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Figure 2. Traffic volume distribution on nodes and paths in ExpressNet

In many other networks such as communication net-

works, the shortest paths are usually chosen for information

exchange. However, it’s not the case in ExpressNet. The

proportion of the traffic flow on all the shortest paths (the

shortest path is defined as the path with the fewest hops

between node pair) is 65.6%. It indicates that more than

one path may exist between a pair of nodes and a great

part of traffic volume does not follow the shortest path rule.

This can be explained by the unique features of ExpressNet

that package delivery is carefully scheduled and the delivery

time is usually strictly limited [3]. In the case when the

trucks scheduled over the shortest path have left already, the

network may figure out another path in order to meet the

deadline [9]. Therefore, different paths between nodes will

clearly complicate the package delivery dynamics and add

difficulties to the delay analysis as we will discuss in later

sections.

B. Traffic Temporal Dynamics

It is interesting to measure the traffic dynamics on the

temporal scale that owns hour-level granularity. In this part,

traffic generated from the source node (start traffic) and

the traffic flowing to the destination node (end traffic) is

analyzed and compared. We first observe a clear periodicity

of the start and end traffic on one-week scale at per-hour

granularity. Then we shrink to one-day scale and extend to

one-month scale, respectively, to make comparison between

the start and end traffic.
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(a) Start traffic
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(b) End traffic

Figure 3. Diurnal characteristics of start and end traffic volume

Figure 3 shows the weekly distribution of start and end

traffic volume. Firstly, we focus on the traffic time-series

at per hour granularity (the blue circle dot lines in Figure

3(a) and 3(b)). The package volume in both start and end

traffic concentrates in the day time and reaches the peak

at a relatively fixed time every day, i.e., they show strong



diurnal characteristics. More clear details about start and end

traffic are compared on one-day scale in Figure 4(a). For

the start traffic, the peak is around 19:00 and this indicates

that packages collected in the daytime are mostly sent out

in the evening especially between 18:00 and 20:00. There

is also a small peak around 12:00, which corresponds to

some priority packages collected in the morning and mailed

at noon. For the end traffic, the peak arrives at 10:00 and

a slight shake exists between 15:00 and 17:00. It indicates

that the majority part of packages arrive at their destination

in the morning and are expected to be delivered by noon.

Another circumstance is that packages arrive between 15:00

and 17:00. Such a schedule is also reasonable because the

couriers of express company will be usually off duty after

19:00.
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(b) One-month scale

Figure 4. Comparison between start and end traffic

Furthermore, we discuss the traffic volume time-series at

per day granularity (the red triangle lines in Figure 3(a)

and 3(b)). In Figure 3(a), traffic counts from Monday to

Friday are relative stable and are higher than that during the

weekend, which of the pattern is consistent with working

schedule in China. Most packages are generated to satisfy

the demand of the business activities on weekdays. Com-

paratively, less express service is needed during weekends.

It’s interesting to notice that the red triangle lines in the two

figures do not follow the same trend. Thus we compare the

time-series between start traffic and end traffic on the one-

month scale in Figure 4(b). The results reveals that most of

the end traffic lags 1-2 days compared with the start traffic.

This time shift corresponds to the average delivery time,

which we will discuss in the Section IV.

C. Package Delay Analysis

In this section, we characterize an important property of

traffic dynamics: the package delay. Package delay repre-

sents the delivery time between package pickup and package

receipt. The delay distribution and the relationship between

delay and distance are analyzed. The results obtained from

the delay analysis further motivate us to model the package

delivery dynamics in Section IV.

We find that package delay varies a lot on paths with dif-

ferent distances. Even packages on the same path may have

a diverse delay for the different start time and transportation

methods. The distribution of the package mean delay on all

paths are shown in Figure 5(a). The delay varies from 1 to

98 hours and the majority of delay is less than 50 hours.

Moreover, two peaks appear near 23 and 39 hours, which

are in accordance with the ”next-day delivery” and ”two-day

delivery” services provided by Shunfeng Express.
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(b) The mean delay on different
path lengths

Figure 5. The distribution of the mean delay

In order to discover the relationship between delay and

path length, we plot the mean delay on different path length

in Figure 5(b). It clearly shows that the mean delay increases

with the path length. This is similar to the intuition that more

hops usually add up distance, which results in a larger delay.

However, it’s difficult to predict the package delay with this

relationship because it is just a statistical phenomenon and

does not contain accurate distance information.
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Figure 6. The relation between delay and distance

To be more reasonable, we take the geographic distance

into consideration and plot the relationship between mean

delay and path distance in Figure 6(a). The blue dotted line



represents the normalized mean delay on different paths (the

path is sorted by distance) and the red delta line shows the

normalized path distance. The delay increases with the path

distance in the overall trend. But this trend is not obvious

enough and even some short delays appear when the path

distances are relatively long. We believe this is caused by

different transportation methods in delivery process.

To verify this hypothesis, we analyze the relationship

between mean delays and hop distances in Figure 6(b).

The delay first increases with the hop distance. But when

the hop index (the hop is sorted by hop distance) reaches

1100 (the corresponding hop distance is 859 kilometers),

the delay begins to decrease. It implies when hop distance

is longer than 859 kilometers, airplanes are used thus short

delay appears. It can be further supported by the major peak

delay near 23 hours in Figure 5(a). The threshold hop delay

corresponding to the threshold distance is 16.8 hours, adding

the delay inside the nodes together up to 23 hours. It’s

obvious that such a threshold distance has been carefully

designed. It should not be too long for the trucks to miss

the time limit while not too short as more airplanes incur

high costs.

D. Summary

In this section, we have presented thorough analyses

on package traffic dynamics in ExpressNet. Traffic volume

is uneven distributed across different nodes and different

lengths of paths. 20% of nodes own 80% of traffic volume

and single-hop path bears more than 40% of traffic volume.

Different paths may exist between a pair of nodes and a large

part of traffic volume does not follow the shortest path rule,

which complicates the package dynamics. These analysis

results provide useful insights for service management and

network optimization, such as node importance estimation

or flow control in ExpressNet.

The package traffic shows strong diurnal pattern and

weekly variation, which reflects people’s daily activities.

Traffic usually starts at nightfall as transportation during

night is fast and cost-efficient. It also guarantees more

packages collected in the daytime be delivered at at an early

time of a day, which is consistent with the fact that traffic

often ends in the morning. In addition, traffic volume of

weekday is larger than that during the weekend indicating

the weekly working schedule.

There are two peaks in the mean delay on all paths, which

are in accordance with the two types of services provided

by Shunfeng Express. A positive correlation exists between

package delay and path length as well as path distance. We

hypothesize that 859 kilometers may be a threshold in the

statistical sense for the company to use airplane and further

verify it through concrete analysis. The dynamics in the

package delivery is relatively complicated and the package

delay is hard to precisely infer through data analysis. This

motivates us to investigate how to model the package deliv-

ery dynamics mathematically using our collected data traces,

thus predicting the delay more accurately.

IV. MODELING PACKAGE DELIVERY DYNAMICS

Delivery time/delay is a key performance metric in ex-

press shipping service. To estimate the delivery delay, we

need to sketch the network dynamics. From Section III-A

and III-C, we find estimation of package delay is a non-

trivial problem due to the following two reasons. The first

one is that multiple paths may exist between a pair of nodes

and packages do not always take the shortest path. The

other one is that different kinds of transportation methods

such as trucks and airplanes may be used on the path. To

solve this problem, in this section we propose a data-based

Extended Markov Model to depict the package delivery

dynamics and further predict the package delay. The basic

model is described in Section IV-A and then the modeling

performance is evaluated in Section IV-B. In Section IV-C,

we discuss how to utilize the model to estimate delay

between nodes on different paths.

A. Extended Markov Model

For ExpressNet G = (V,E), the state of package de-

livered in G can be represented as s(l), where l is the

location of the package and can either be the node v or the

edge e in the delivery path. Taking the path R = v1v2v3
as an example, all the possible states in this path are

s(v1), s(v1v2), s(v2), s(v2v3) and s(v3). When describing a

delivery process, the probability of the package in a certain

state at a given time needs to be concerned. Therefore, we

define Xk = [x1 x2 ...xi ... xn] as the state probability set

of the package delivered in the path with n states at time slot

k. xi is the probability of the package in the i−th state, 0 ≤
xi ≤ 1, Σn

i=1xi = 1. For the path R = v1v2v3 mentioned

above, if the state probability set Xk = [0.2 0.3 0.3 0.2 0], it

means that the probabilities of the package of the 5 states are

0.2, 0.3, 0.3, 0.2 and 0, respectively, at time slot k. Therefore,

the package delivery process can be defined as a random

process X =< X0, X1, X2, ...Xk, ... >. X can be modeled

as a discrete time Markov chain as follows:

Xk = Xk−1P (1)

where P is the transition matrix. Distinguished from con-

ventional transition matrix, P is changing over time in the

delivery process. We term this kind of model as Extended

Markov Model (EMM) in this paper. Mathematically, the

EMM can be described as follows:

Xk = Xk−1P k = X0
∏k

i=1
P i (2)

where X0 = [1 0 0 ... 0] is the initial state probability set

and P i is the transition matrix at time slot i. The process

will terminate when Xk reaches [0 0 ... 0 1].
The EMM can not only depict the package dynamics

during the delivery process, but also predict the package



delay. However, there are two factors required to be derived.

One is the length of each time slot, i.e. the period T of the

delivery process, and the transition matrix P k. The period

T is set to 1 hour. Such a setting should be accurate enough

for the time granularity while reducing the computational

complexity of P k. Then we describe how to compute P k.

For a path with n states, P k can be wrote as follows:

P k =




p11
k p12

k 0 0 ... 0
0 p22

k p23
k 0 ... 0

... ... ... ... ... 0

... ... pii
k pij

k ... 0
... ... ... ... ... ...

0 0 0 0 0 pnn
k




(3)

where pkij denotes the transition probability from state xi to

xj at time slot k, ΣN
j=1p

k
ij = 1. For a given time slot k, the

package can either transfer to the next state or stay at the

original state. Therefore, pkii = 1 − pkij . Then we just need

to compute pkij in P k.

T

time slot

state

state

last state

+ ++

Figure 7. The transfer process between two states

For a given path R = v1v2...vivj ...vn, we just consider

two states s(vi) and s(vivj). The state probability is denoted

as xi, xj , respectively. In the following parts, xi, xj can also

represent the states s(vi) and s(vivj). The transition process

from state xi to xj is shown in Figure 7. t0 is the earliest

time slot that package arrives at xi (It also represents the

package collection time if xi is the first state in the path).

The probability of package transferring to state xj from xi

depends on the time slot when package arrives at xi. The red

dotted line in the figure is taken as an example to describe

the deduction of pkij . Mathematically, pkij can be computed

as

pkij =
k−1∑
m=0

P̃ r(t0 +m)Prt0+m(k −m− 1) (4)

where P̃ r(t0 + m) is the probability that package arrives

at xi at time slot t0 + m, and Prt0+m(k − m − 1) is the

probability that package transfers to xj at time slot k−m−1
under the condition that package arrives at xi at time slot

t0 +m. Both P̃ r(t0 +m) and Prt0+m(k −m− 1) can be

calculated from the corresponding traces in our data set.

B. Evaluation

In order to understand the performance of the EMM, the

package dynamics and the delay prediction obtained by the

model are tested and validated in this section. According

to the data generated time, the data set is divided into two

parts. The first part consists of the data from November to

December in 2012, which is used as the training data to

calculate model parameters. The second part contains the

data from January to February in 2013 and is used for

modeling performance evaluation. In the rest of this section,

the model is firstly tested on an easy single-hop path to show

how to utilize the model. Then the model is implemented

in a more complicated multi-hop scenario to further validate

the performance. At last, various multi-hop path cases are

randomly selected to verify the accuracy of delay prediction.

First we analyze the package dynamics and delay predic-

tion on a single-hop path from Beijing to Shanghai. Figure

8(a) shows the changes of the state probability set in this

path. It can be observed that state x1 decreases from 1 to 0

and x3 increases from 0 to 1. Meanwhile, state x2 increases

in the first 15 hours and decreases to 0 later. It indicates

that package is more likely to transfer from node Beijing

to hop Beijing-Shanghai in the first 15 hours, and then

transfer from hop Beijing-Shanghai to node Shanghai. The

distribution of x3 predict the package delay at the same time.

For instance, x3 is 74.53% at time slot 30, which represents

the probability of delay less than 30 hours is 74.53%.

Figure 8(b) compares the CDF between the delay pre-

dicted by the model and the actual delay obtained from the

evaluation data set. It can be observed that two CDF curves

match well. Great decreases occur in both curves when the

delay is close to 16 hours, which is a potential delivery

time of the package. The comparison of the delay with peak

probability is illustrated in Figure 8(c). It can be seen that

the predicted delay with maximum probability is between 14

and 18 hours, with probability as high as 51%. While the

actual probability based on the evaluation data set is 55%,

with a probability difference of only 4%. The probability of

predicted delay and actual delay between 29 and 30 hours is

12%, 9%, respectively, with a deviation of around 3%. The

analysis above demonstrates that our model works well for

the single-hop case.

Figure 9 shows the evaluation results of the model on the

multi-hop path from Beijing to Guangzhou, via Shenzhen.

It can be seen that x5 in Figure 9(a) is 83.65% at time slot

25 indicating the probability of package delivery time less

than 25 hours is 83.65%. Figure 9(b) further shows the well

consistency of the CDF between the predicted delay and the

actual delay. Peak probability of delay is shown in Figure

9(c). The probability of predicted delay between 17 and 22

hours is 84% while the ground truth value is 88%. These

evaluation results validate our delay prediction model for the

multi-hop case.
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Figure 8. The evaluation of the single-hop case
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Figure 9. The evaluation of the multi-hop case

We further evaluate the EMM with different multi-hop

paths in our data set. It can be seen from Figure 2(b)

that less than 40% of the total traffic volume is multi-

hop transportation, which demonstrates that traffic volume

is unevenly distributed among paths. Actually a great part

of multi-hop paths have little traffic volume that is not

sufficient for modeling. Therefore, we select multi-hop paths

with plenty of package traces for further evaluation, which

include 200 paths with totally 3.4 million traces (21% of the

total traces). As analyzed above, the delay on most paths

owns a peak value with the maximum probability, so we

define the model accuracy δ as

δ = 1−
‖Prpre−Pract‖

Pract
(5)

where Prpre and Pract are probabilities of the predicted

peak delay and the actual peak delay, respectively. After

testing all 200 paths, we find the average value of δ achieves

91%, which verifies the effectiveness of our proposed EMM

in package delivery delay prediction.

C. Discussion

After the validation of the model accuracy, we further

describe the utilization of the model to predict the delay

between node pair with different paths. For a given node pair

S and D, suppose there exist n different paths Ri, i ∈ [1, n]
between them. From the evaluation section above, we can

see the peak delay of each path can be obtained from the

EMM, denoted as P k(Ri). It’s reasonable to use the peak

delay to depict the delay on the path because most paths in

our data set own a peak delay with a dominant probability.

A simple way to calculate the peak delay between this node

pair is

P k(SD) =
n∑

i=1

βiP
k(Ri) (6)

where βi is the weight of each path and can be simply

determined by the proportion of traffic flow on this path. The

coefficient βi is a adjusted parameter which could be used

to characterize path uncertainties and various transportation

methods between nodes. We leave the problem of how to

choose βi to our future work.

Note that based on the collected data set spanning over

4 months, our EMM provides fairly high accuracy for

different node pairs and path length. However, the structure

of ExprressNet may change over time. In that case, we need

to update the model parameters periodically using the latest

collected data therefore maintain a high prediction accuracy.

V. RELATED WORK

To the best of our knowledge, this paper presents the

first study on characterizing and modeling the package

dynamics in a ExpressNet based on real package delivery



information. Prior related works include the network design

and optimization, the geographical analysis of the network

and the impact of express service on economy. We briefly

describe some primary related works below.

In [7], the authors present a linear programming formu-

lation for the single allocation p-hub problem using data

from a postal delivery network. In [8], Seung-Ju Jeong et

al. investigate how to plan the transport routes, frequency

of service and transportation volume in rail freight system

in a 10-country European network. Kim et al. develop a

model for package delivery problems with time windows

in [9]. In contrast to these works on network design and

optimization, our work focuses on the characterization and

performance evaluation on the ExpressNet put in operation

through extensive data analysis. The results from our work

can in turn evaluate and verify the validity of the design.

In addition, there are also some works analyzing the

ExpressNet from the perspective of social policy and eco-

nomics. C.-C. Lin et al. compare the economic effects of

hub-and-spoke network with center-to-center network in [5].

Y.-C. Song et al. analyze the relationship between the logis-

tics and economic growth in China based on the data from

National Bureau of Statistics in [6]. Different from these

works, we not only characterize the traffic dynamics but also

model the package delivery process in a relatively rigorous

way, to benefit both service providers and customers.

There are several related works using the similar meth-

ods to study the traffic in other networks. In [11] [12]

[13] [14], the authors characterize the traffic dynamics in

cellular networks. Relevant to our work, they measure the

temporal traffic dynamics based on network science. The

authors in [15] present a model to combine multiple random

processes in network traffic, and in [16], the authors model

the dynamic trust of online service providers by a Hidden

Markov Model. Similar to our work, both of them model the

intricate traffic dynamics. However, our data-based EMM

is more robust and flexible, and can self-updated with

newly collected data. Some other related works include

characterizing the video traffic of YouTube [17] and wireless

network traffic during the Super Bowl [18].

VI. CONCLUSION

In this paper, we propose complete systematic study on

characterizing and modeling package dynamics in express

shipping service network (ExpressNet). Based on 16 million

collected express shipping traces, we first infer the network

structure, and then examine the spatial and temporal charac-

teristics of the network. Furthermore, we devise an Extended

Markov Model to depict the package delivery dynamics and

predict the package delay. The performance of the model is

extensively evaluated with high delay prediction accuracy.

We believe the results and insights gained from our work

can promote express shipping service benefits both service

providers and customers.
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