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Abstract—Along with the increase of vehicle ownership, the
traffic problem has a serious impact on people’s daily life.
Not only the traffic congestion, but also the parking problem
troubles urban daily traveling. Therefore it is important to
obtain the parking demand to help the government to make
a rational decision on traffic planning and management. This
paper focuses on estimating the vehicle number in a certain
area (i.e., the spaces surrounded by the arterial roads) in each
time slot to analyze the area parking demand, using RTMS
(Remote Traffic Microwave Sensor) data. We first propose a
basic method to calculate the AVN (Area Vehicle Number)
based on the inflow and outflow traffic of the area. In order to
correct the error caused by minor roads without RTMS data,
we propose an advanced method to improve the estimation
accuracy by exploiting the road traffic correlation from a
network perspective. Comprehensive evaluation is conducted
to verify our design based on large amount of RTMS data
from the Hangzhou city during one month. The estimation
results also demonstrate interesting human behaviors among
various urban areas.

I. INTRODUCTION

The number of vehicles has been growing tremendously

in various cities which makes the traffic congestion a

global issue. According to the report of the Texas A&M

Transportation Institute at 2015, the traffic congestion has

cost 960 dollars and 42 hours per person annually in the

U.S. [1]. As a result, studies on moving vehicles (e.g., traffic

speed prediction [2], traffic flow prediction [3], and etc) and

public transportations (e.g., bike sharing system [4], express

system [5]) have been widely presented in literature.

At the same time, as a critical element of traffic, parking

problem has been attracting increasing attention in many

countries. For example, there were more than 2.5 million

vehicles in Hangzhou by the end of 2013 [6], and the

gap between parking space and parking demand was more

than 650 thousand [7]. Note that such gap in city scale

does not even accurately reveal the situation of temporary

hotspots where the gap may be much larger. With the fast

urbanization in many developing countries, such parking

difficulty becomes more obvious, resulting in unauthorized

parking or long-time search for parking slots. Therefore, in

order to accurately reflect the area traffic status, it is crucial

to estimate numbers of both moving vehicles and parked

vehicles within the corresponding area, which we define as

Area Vehicle Number (AVN) in this paper.

The estimation of AVN is of significance from two

aspects. First, AVN including both the moving vehicles and

the parked ones reflects the vehicle capacity of the area, and

can also estimate the parking space capacity by subtracting

the number of moving vehicles on the roads which may

be inferred from the traffic speed [8]. Second, the dynamic

AVN helps to better reveal the human mobility patterns that

are closely related to the functionality of the area. It can

be further exploited for better civil infrastructure planning

such as parking lots. For instance, if we can provide enough

parking space to meet the actual demand, the on-street

parking will be reduced substantially.
Although it is possible to recover the moving vehicle

number through the traffic speed, the number of parked

vehicles is difficult to infer due to the lack of the mea-

surement data. For example, the vehicles may be parked

at various lots where the occupancy status is not well

observed, like the street lots without occupancy sensors,

or open space of residential areas. The existing parking

demand prediction methods [9] only provide a prediction

of the number of parked vehicles with coarser granularity

through costly onsite survey.
In this work, we aim to establish a general framework

for accurate AVN estimation by exploiting the available

large amount of traffic data, especially the Remote Traffic

Microwave Sensor (RTMS) data. Intuitively, it is direct to

obtain the AVN by adding up the directed traffic flow for

the specific area. However, the problem is very challenging

due to the incomplete RTMS measurements in both time

and space domains. Furthermore, the estimation error may

accumulate along with the time.
In this paper, we propose a systematic work to estimate

the AVN using the large amount of RTMS data and road

network data. Specifically, we explore the temporal and

spatial correlations among the RTMS measurements and the

road segments for completing the missing data. Meanwhile,

we correct the accumulating estimation error dynamically

by exploiting the periodic human behavior. The intellectual

contributions of this paper can be summarized as follows:

• To the best of our knowledge, we first propose a

systematic method to estimate the area vehicle number

using RTMS data.

• We infer the parking demand based on the inflow and
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outflow traffic, and improve the results by connecting

roads balance the traffic flow from a network perspec-

tive. At last, we combine the statistic information of

the area to obtain the gap between parking space and

people regular demand.

• We perform comprehensive evaluation based on more

than 3.5 million RTMS data from the city of Hangzhou

during one month and compare the estimated parking

demand to the vehicle ownership data, and the mean

relative error is about 10% in the cases.

The rest of this paper is organized as follows. We first

describe our datasets and preliminary data processing in

Section II. In Section III, we introduce our method to

estimate the AVN based on RTMS data including both basic

design and advanced design. Then we evaluate the method

using three typical areas in Hangzhou in Section IV. Related

works are discussed in Section V and we make a conclusion

of this paper in Section VI.

II. PRELIMINARY

In this section, we briefly introduce the traffic flow

data collected by RTMS and the road network data from

Hangzhou. After that, we propose methods to compensate

the incomplete RTMS measurements of road segments.

A. Background

Remote Traffic Microwave Sensor (RTMS) is widely

installed on roads to count real-time traffic nowadays. For

example, there are more than 570 such sensors deployed

in Hangzhou at the end of 2013. Comparing to the other

traffic flow sensors, the RTMS produce traffic counts that

are up to 97 percent accurate [10]. Furthermore, RTMS is

a low-cost, general-purpose, all-weather traffic sensor which

detects presence and measures traffic parameters in multiple

independent zones [11].

1) RTMS Dataset: The RTMS dataset is collected from

Dec. 1st, 2013 to Dec. 31st, 2013, and the total number of

the records is about 25 million where the sampling period

is 1 minute. The sensors (RTMS is deployed on the middle

of the roads) mainly measure the traffic flow space (i.e., the

number of vehicles passing the sensors per minute) of 515

arterial road segments (the number of sensors deployed in

some important arterial roads is more than one). Moreover,

each record consists of five fields, including ID of the road

segment, ID of the microwave sensor, number of the lane of

the road segment, total traffic flow of the lane of the road

segments and the record time.

2) Road Network Dataset: We use the road network

dataset of urban area of Hangzhou from the government,

which includes 1759 arterial road segments. Each record

consists of road code, start of the road, end of the road

and nodes (one complete road is divided into individual

road segments without intersection, the node is the point

of division) with longitude and latitude.

Figure 1: Traffic flow completion methodology

B. Data Preprocessing

We consider the traffic data completion in this part. We

first convert the sampling time into 15 min (the number of

records is 96 per day). In the following, we show how to

compensate the missing RTMS data (missing means some

of the sensor measurement records are missing).

We combine a grey model (GM(1,1)) with historical data

to design a strategy to fill the missing values as Figure 1

shows. Grey forecasting model is a time series forecasting

model and using a small amount of incomplete information

to establish a prediction model. Grey forecasting model

has been used in many applications, like traffic flow/speed

prediction, power demand forecasting, stock price prediction

and so on. The GM(1,1) is one of the most frequently used

grey forecasting models [12].

Note that the grey model (GM(1,1)) is able to character-

ize the short-term correlation of RTMS measurements for

estimating the missing value, while the historical average

value during the same time of the day and day of the

week is able to represent the periodic pattern of traffic

flow which captures the long-term correlation of RTMS

measurements. Thus, in order to improve the accuracy, a

weighted summation method is adopted to fuse the two value

as Figure 1 shows. The variables we use in the grey model

is as follows: 1) f(t) is the value to be estimated. f(t)

demonstrates true traffic flow of time t, and we define ˆf(t)
as the estimated value of f(t). 2) The training sample is as

f(t− 1), f(t− 2), f(t− 3), ..., f(t− n), which represents

the traffic flow at time t− 1, t− 2, and etc.

In order to calculate the result, the length of the sliding

window (n) needs to be optimized. Therefore, we choose

the whole day flow data as the training set without records

missing to find an appropriate n. Specifically, the estimation
ˆf(t) is obtained by a sliding window (from f(t − 1) to

f(t − n)) to get the training sample with a certain length

of n, and the ground truth is f(t). Then, by calculating the

absolute error between the estimation ˆf(t) and the ground

truth f(t) with different n, we can determine the optimal n
with the minimum absolute error.

Additionally, because the traffic flow data has strong

cyclical characteristics [13], we also calculate the historical

value of the flow data at the same time of the day and the day

of the week to improve the GM(1,1) estimation. Specifically,

we propose the following weighted linear combination for

the estimated value ˆf(t): ˆf(t) = αx1+βx2 (α+β = 1),
where x1 is the result by direct GM (1,1) prediction, and

x2 is the historical average value. In order to obtain the
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Figure 2: the RTMS data completion

optimized value of weights α and β, we define the objective

function J(α) to minimize the RMSE of the estimation:

J(α) =
1

2

m∑

i=1

(αx
(i)
1 + βx

(i)
2 − y(i))2 (1)

By taking the derivative, we have

∂J(α)

∂α
= −

m∑

i=1

(αx
(i)
1 +(1−α)x

(i)
2 −y(i))x

(i)
1 x

(i)
2 = 0 (2)

which means α = Y−X2

X1−X2
. Thus the optimal α and β can

be calculated by the training samples.

Furthermore, since GM (1,1) estimation is close to the

historical average due to the cyclicity of the traffic flow,

the outliers can be identified if the deviation between the

GM (1,1) estimation and the historical average value is

quite larger, therefore we change the weights to decrease

the influence of the outliers.

To briefly demonstrate the efficiency of our proposed

method, we show the data completion performance in Figure

2 where we choose the rest as the training set, and the two-

day data of a road segment as the testing set. Then the MAE

(mean absolute error) and the MRE (mean relative error) are

defined as

MAE =
1

n

∑
| ˆf(t)− g(t)| (3)

MRE =
1∑
g(t)

∑
| ˆf(t)− g(t)| (4)

Figure 2 shows the completing result of one road segment

base on our method, GM (1,1) and SVR respectively. The

MAE and the MRE are (14.36, 4.36%), (22.79, 6.92%) and

(36.7, 6.92%) for three approaches respectively.

III. AVN ESTIMATION DESIGN

In this section, we focus on the AVN estimation problem.

First we propose a basic method to infer the AVN based on

the principle of in/out vehicle approximated balance. Then

by taking into account more information, we propose an

advanced design to improve the AVN estimation accuracy.

In order to get more accurate AVN, the targeted area

should be surrounded by minimum number of intersections.

The road network can be represented as a directed graph

G = (N,E), where N denotes nodes (the intersection in

road network) and E denotes links (each road segments) in

road network topology. The arbitrary selected area is denoted

by A, which is a subgraph of G. For each targeted area,

the critical nodes are defined as the nodes representing the

interaction points of links entering/exiting the area.

A. Basic Design of Area Vehicle Number Estimation

1) Basic Design Idea: The basic idea of AVN estimation

is the approximated balance of the vehicle number moving

in and out of the area for each day. More specifically, the

vehicle number in the area is controlled by the amount of

entrance and exit traffic for the selected area [14], and the

AVN of the start and the end of a day should be relatively

stable and approximately equivalent normally. Therefore we

may infer the AVN by utilizing the flow data of links which

run in/ out of the area.

(a) road network topology (b) real road network

Figure 3: The basic method

We explain the basic design idea through the example

shown in Figure 3(a), where the black blocks represent the

remote traffic microwave sensor, the dotted oval represent

the area selected, black arrows indicate the flow direction of

the key links. The basic idea is as follows. After selecting a

certain area, we find out the key links which enter/exit the

area, then set the initial AVN of the area to 0 and sum over

all directional flow data of these links in each time slot of

a day (from 00:00 to 23:59), which obtain the area vehicle

number at last.

2) Compensate the RMTS data for arterial roads: One

difficulty for the basic design is that we may not have the

RTMS data for some key arterial links (in/out of the area)

which are not equipped with the sensors. This problem is

different from the previous data preprocessing where only

part of the RTMS data is missing. In order to handle this

difficulty, we utilize spatial correlation of links based on

the road network topology, and adapt the weighted-KNN

approach to estimate the missing data of key links from their

neighbor links [15]. Specifically, we select the road segments

connected to the arterial links directly as the neighbor links,

and decide the weights according to the distance between

them (length of the shortest path form the middle of neighbor

segment to the middle of target segment). The road segment

more close to the target road segment has the larger weight

by inverse of distance [15].
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Algorithm 1: the Basic Method of AVN Estimation

Input: F ←RTMS dataset, G←road network graph,

A←selected area

Output: area vehicle number V

initialize V ← zero vector

for (r(i) ∈ G.E) do
if (r(i) ∈ A.E) then

if (r(i)! = null) then
R′ ← r(i)

else
r(i)← weighted−KNN
R′ ← r(i)

end
end

end
for (r(i) ∈ R′) do

ΔV ←
[
∑1

t=1 f(r(i), t),
∑2

t=1 f(r(i), t), ...,
∑end

t=1 f(r(i), t)]
if (r(i) leave A) then

V = V −ΔV
end
if (r(i) enter A) then

V = V +ΔV
end

end
return V

In order to demonstrate the effectiveness of our compen-

sation, we choose three road segments (No.242, No.290,

No.191), and show the estimation performance in Figure 4

where a typical estimation trace as well as the CDF results

is demonstrated. The MAE and RMSE of the results are

(18, 26.0953), (49, 76.1078), (43, 57.5097). We can see that

the estimation is close to the ground truth for most time

slots. However, for some time instance, the estimated traffic

flow deviates relatively large from the ground truth. One

important reason is that there exist some minor roads (as red

curves shows in Figure 3(b)) which run in/out of the area and

steal/input some traffic flow. Moreover, the estimation error

at each time slot may be accumulated to increase the error

along with time. Therefore, in the following part, we propose

our advanced design for more accurate AVN estimation.

B. Advanced Design of Area Vehicle Number Estimation

In this part, we aim to compensate the error caused by

unknown minor road segments and the accumulated error.

The proposed advanced design is based on two observations:

1) The number of vehicles which belong to the area should

be equal during a period (24 hours for example), due to the

regular daily behavior of most people living or working in

the area. 2) Vehicles running on arterial roads can either end

up at the next node or leave the road halfway (i.e., go to

the parking place or leave the area through the minor road
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Figure 4: KNN based Road RMTS Data Compensation

segments).

Based on the first observation, we set 24 hours as a period,

and start from 0:00 to 23:59 each day for most areas, and

check the differences between the initial vehicle number and

the end vehicle number of the area for different days. If the

RTMS data is accurate and complete for all the roads and

time slots, such a sequence of gap should be relatively stable

and close to zero since the difference mainly represents the

number of vehicles which enter the area without leaving

until 23:59 (or vice versa) each day. However, due to the

stealing/input flow from minor roads as well as the error

caused by other reasons, such as data preprocessing, the

difference sequence fluctuates as shown in Figure 5. where

we testify the results for three typical areas in Hangzhou city.

The details of the three areas will be explained in Evaluation

part.

Therefore, in the following part, we utilize the observa-

tions to correct the error. From Observation 1), we have the

following equation for each day
∑

t

[fin,a(t) + fin,m(t)] =
∑

t

[fout,a(t) + fout,m(t)]

t = 1, 2, ..., 96

(5)

where fin,a(t) and fin,m(t) in Equation 5 represent the

traffic flow entering the area through the arterial roads
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Figure 5: basic design of three areas

and the minor roads at time slot t respectively. fout,a(t)
and fout,m(t) in Equation 5 means the traffic flow leaving

the area through the arterial roads and the minor roads

at time slot t respectively. We have converted the time

slot into 15 min before, so the value of t is from 1 to

96 per day. We consider
∑

t[fin,a(t)] =
∑

t[fout,a(t)] in

our basic method based on the balance of traffic flow.

But because of traffic flow of the minor roads, the error

is 0 − (
∑

t[fin,a(t)] −
∑

t[fout,a(t))], which is equal to

(
∑

t[fout,m(t)−fin,m(t)]). The error means the traffic flow

in/out of the area through the minor roads. We use the

connection of the roads and the balance of traffic flow to

correct the error.

It should be note that from Figure 5, the difference varies

largely for all three areas, which proves that the error is not

a constant value but indeed correlated with the traffic flow

of its neighbor roads. Therefore, a static correction over the

whole area is not enough to compensate such a dynamic

error. In order to effectively reduce the error, we propose a

partition-and-correction approach.

We first partition the area into several sub-areas depending

on the critical nodes because the traffic flow exits/enters the

area through the critical nodes. And the points where the

sensors are located on the arterial links are the boundaries

of each sub-area. For each sub-area, the traffic flow should

be balanced, and the unbalanced part calculated by accu-

mulating the traffic flow over key arterial links (the arterial

roads connecting to the critical node) should correspond to

the error caused by the minor links which connected directly

to the arterial links. Therefore the traffic flows between the

arterial links and the minor links should be highly correlated

which can help us to correct the sub-error caused by the

minor links (in/out of the sub-area) without RTMS. At

last, we add up each sub-area’s modification to obtain the

modification of the target area.

Without the exact priori knowledge about the traffic flow

over minor roads, we make the following assumptions: (1)

the traffic flow of the arterial road i (flowi) is proportional

to the traffic flow of the minor roads (ei) connecting to it.

But if an arterial road has no minor roads, we think this link

doesn’t cause any error. Because the arterial roads has strong

correlation with the minor roads connected to it directly and

the traffic flow obey the principle of continuity [14], the

traffic flow of the minor roads should be closely correlated

to the traffic flow of the arterial road.

According to the supposition, we can assign the sub-error

to the each arterial links in the sub-area as Equation 6.

ei =
flowi∑
i flow

e (6)

where e is the total error of the critical node. ei is the total

error caused by the neighbor minor roads of the arterial road

i (we think the error is caused by the arterial road i for

convenience).

After that, we normalize the traffic flow of the arterial

road i (flowi) and use it to replace the traffic flow curve of

the minor link to obtain the modification in each time slots

of a day as Equation 7.

ei(t) =
flowi(t)∑
t flowi(t)

ei (7)

where ei(t) is the error of the arterial road i at time slot t.
From the above equations, we can first calculate the

correction error for all arterial links of each sub-area. Then

by adding the correction errors up, we are able to obtain the

total correction error for the whole targeted area, which can

further be utilized to correct the estimated AVN obtained by

the basic method. The algorithm of the advanced method is

shown in Algorithm 2. The time slot is 15 min in algorithms.

The time complexity of the basic design is O(mt). The

time complexity of the advanced design is O(mnt), where

n is the number of critical nodes, m is the number of links

connected to the critical node, and t is the number of the

time samples.

Algorithm 2: the Advanced Method of AVN Estimation

Input: F ←RTMS dataset, R←road network dataset,

A←selected area

Output: area vehicle number V

initialize V ← zero vector

V ← the basic method

E ← the error of A

for (node(j) ∈ A) do
for (link(i) ∈ node) do

ej ← balance of flow

ei ← [ flowi∑
i flowi

]ej

ei(t) =
flowi(t)∑
t flowi(t)

ei

end
ej ← [

∑
ei(1),

∑
ei(2), ...,

∑
ei(t)]

end
V ← V +

∑
ej

return V

IV. EVALUATIONS

We evaluate the effectiveness of our design through three

typical cases. Specifically, we select three representative
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areas in Hangzhou city, China. Area 1 is mainly composed

by residential buildings and some schools. Area 2 is a mixed

area including residential buildings, business buildings for

work, and Area 3 is a bit complicated including residential

buildings, restaurants and entertainment places. The differ-

ence of major functionalities among the areas makes the

AVN of each area appears differently.

Area 1 contains 8 arterial roads (6 of them have RTMS

data) and 3 minor roads, totally 725398 records. Area 2

contains 10 arterial roads (7 of them have RTMS data) and

9 minor roads, totally 1591786 records. Area 3 contains 12

arterial roads (9 of them have RTMS data) and 8 minor

roads, totally 1847081 records.

Note that at 00:00 am every morning, we reset the initial

value of AVN as 0, then estimate the AVN at each time

slot (every 1 hour) by the advanced design approach. The

positive AVN means that the number of vehicles in the area

is larger than the initial value, and more vehicles come in and

park in the area, and vice versa. By adding up the absolute

values of the maximum and the minimum AVN estimation,

we can directly obtain the Maximum AVN Volume of each

day.

A. Analysis of Area 1
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Figure 6: AVN of the Area 1

Figure 6(a) depicts the AVN estimation of Area 1 for each

day during a month. We can find that the curves are similar

to each other and the curve of a day present a ’U’ shape

obviously. For instance, AVN (workday) decreases rapidly

start at 7:00 am and slows down at 10:00 am, then keeps

stable. At 4:00 pm, the AVN begins to increase and stays

at 0 at the end of a day. Furthermore, the pattern of curves

reflects the mobility of people in the area (people go to

work in the morning and back home in the evening). At

weekend, many people travel by public transport instead of

cars so that the curves of the weekends are different from

those of the workdays, as the steep curves and the flat curves

in the Figure 6(a) (the steep curves indicate the workdays,

and the flat curves indicate the weekends). According to the

AVN curves, it is clear that the change of AVN for Area

1 coincides with its type, residential area. Figure 6(b) and

Figure 6(c) show the three dimension description and the

heat map of the AVN respectively.

B. Analysis of Area 2
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Figure 7: AVN of the Area 2

Figure 7(a) shows the AVN estimation of Area 2 for

each day during a month. This area is similar to the Area

1 according to the AVN curves. The curves of Area 2

(workday) between 9:00 am and 10:00 am have a small

peak which means traffic flow coming into the area during

the time (e.g., people come to work). And we also can find

the the segment between 4:00 pm and 5:00 pm is stable

which means the traffic flow in/out of the area is equal (e.g.,

number of people come into the area equals to the people

left the area). After that, we can infer some people work

and some people live in this area. In fact, Area 2 is a mixed

area with residential and business function. Figure 7(b) and

Figure 7(c) show the three dimension description and the

heat map of the AVN respectively.

C. Analysis of Area 3

Figure 8(a) shows the AVN change of a day in Area 3,

which is different from that in the former areas. Combining

Figure 8(b) and Figure 8(c), we can find there are two peaks

and two valleys in most days (workdays). The first valley

appears at the early morning rush-hour because people leave

the area to work. After that, the first peak at the 11:00

am where there are many people coming into Area 3. And

the second valley demonstrates the evening rush-hour. But

the second peak appears between 7:00 pm and 8:00 pm,

which means after the evening rush-hour, the AVN of the

area increase first and then decrease until to the start of

the next day. By contrasting to the area, there are some
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Figure 8: AVN of the Area 3

Table I: The information of areas

area function household number parking space
1 residential, education 8950 1800
2 residential, business 6400 700
3 residential, restaurant 2760 840

restaurants and hotels in it, so people come to have dinner

or entertainment during the time which causes the second

peak. Moreover, we also can find this area varies every day,

the cyclicity is not as strong as the former areas because the

components of the area are more complex than the other two

areas and the vehicles enter and leave the area more often.

D. Parking Demand Analysis

We collect the planning data of housing estate (like

household number, parking space number) in each area from

the website ([16–18] and etc.) as the ground truth, only

statistical data, which do not contain any personal private

or sensitive information. From the detailed data, we can

calculate the vehicle ownership of each area (number of

household times vehicle ownership per capita) as the ground

truth of the parking demand. After that, we can analyze the

gap between people regular demand and the parking space.

According to the estimation as Figure 6(d), Figure 7(d)

and Figure 8(d) show, we can obtain the average maximum

of AVN and use it as the parking demand of each area. Table.

II shows the average parking demand of three areas during

a month and the ground truth we infer from the statistic

data. We can find that the maximum AVN of weekend is

smaller than that of workdays in Area 1 and Area 2, because

Table II: Parking Demand Estimation Result

area workdays demand weekends demand ground truth
1 2964 2340 2455
2 6425 4742 4465
3 1935 2062 1926

Figure 9: Area Parking Space and Demand

many people don’t drive out on weekend. For Area 3, the

maximum AVN of weekends and workdays is nearly equal

although the curve of AVN is quite different. One possible

reason is that many people come to the restaurants and hotels

in Area 3 to enjoy their spare time.

Comparing to the vehicle ownership, we can find that

the vehicle ownership is smaller than the workdays parking

demand but similar to the weekends parking demand in

Area 2 and Area 3. For Area 1, the vehicle ownership is

approximate to the demand all in workdays and weekends.

We can use the weekends demand estimation to obtain the

regular parking demand of the people living in the area. The

relative error between our AVN and the ownership data is

0.06, 0.07 and 0.05 separately in these areas.

Moreover, we can easily obtain the relation between the

parking demand and parking space in the Figure 9. From

the bar chart, we can clearly know the supply-demand gap

of these areas. The parking demands of three case areas are

all larger than the parking space. Especially, in the Area 2,

the demand is almost 7 or 9 times bigger than the parking

space, which causes to on-street parking (more than 1/3

roads of the Urban core blocks has been occupied [7]).

Our estimated AVN can guide authorities to make the traffic

infrastructure planning according to the different situation in

different areas to relieve the parking problem.

V. RELATED WORK

Conventional parking demand estimation methods need a

lot of data which usually is gained by the survey [19] at

the cost of a lot of resources and money. In order to obtain

the parking demand in an easier way, we estimate the AVN

based on the RTMS data which can be collected online and

use the AVN to obtain the dynamic parking demand. Our

method mainly consists of missing flow data completion,

AVN estimation, and parking demand inferring.

The urban black holes detection is related to the AVN

estimation in some degree because these questions (black

hole detection and AVN estimation) should consider the

accumulation of the data, such as flow data, human mobility

data. In [20], the authors use the human mobility data to

detect urban black holes. But our work consider the whole

cycle of AVN to estimate the unbalance of the traffic flow in

and out of area and estimate the AVN with high granularity.

Furthermore, the detection of urban black holes focuses on
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the accumulation of human in a period of time and finds out

regions that have objects higher than a threshold, which is

quite different from ours.

There are some other related works including the urban

traffic commuting analysis based on mobile phone data [21]

and inferring gas consumption and pollution of vehicles [22].

There approaches along with the corresponding data may

further be utilized to improve our AVN estimation accuracy.

VI. CONCLUSION

This paper focuses on the AVN estimation in urban cities.

By utilizing the large amount of RTMS data, we propose the

basic method for inferring the AVN based on the inflow and

outflow traffic. Then we improve the estimation accuracy

by exploiting the roads balance and the traffic network flow.

Extensive evaluations are conducted for different roads and

areas based on more than 3.5 million RTMS data from the

city of Hangzhou during one month. It is shown that our

approach is able to achieve around 10% mean relative error

by comparing the estimated parking demand with the public

vehicle ownership data.
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