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ABSTRACT
3D reconstruction is crucial for applications such as aug-
mented reality (AR) and autonomous driving. However, state-
of-the-art methods often rely on implicit neural representa-
tions (INRs), which require significant communication and
computational resources, resulting in slow and expensive
reconstruction. In this paper, we introduce Eros, a novel
edge-assisted online 3D reconstruction framework tailored
for latency-sensitive mobile applications. Eros reduces data
sampling, transmission, and processing overhead, and com-
bines explicit and implicit methods into an end-to-end sys-
tem to minimize reconstruction latency. Experimental results
demonstrate that Eros reduces reconstruction latency by 28%
while consuming only 34% of the network bandwidth of
low-latency systems, outperforming current approaches.

CCS CONCEPTS
• Human-centered computing→ Ubiquitous and mo-
bile computing.
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Figure 1: Illustration of our proposed NeRF system.

1 INTRODUCTION
Dense mapping, or 3D reconstruction, models the environ-
ment in real-time using camera data, which is essential for
applications like augmented reality (AR)[14] and unmanned
aerial vehicles (UAV)[3]. It enables accurate environmen-
tal reconstruction, supporting latency-sensitive tasks such
as path planning and obstacle avoidance for autonomous
driving in dynamic environments. In virtual reality (VR), it
enhances human-computer interaction, offering more im-
mersive experiences. Real-time 3D reconstruction is crucial
for these applications, as it ensures effective and reliable
system performance with minimal latency.

Traditional 3D reconstructionmethods use either explicit [2,
5, 7, 11] or implicit [6, 8] techniques to represent surround-
ing environments. Explicit representations, such as point
clouds [7], occupancy grids [5], and meshes [11], provide a
more direct approach to capture scene information. However,
explicit reconstruction necessitates a finer spatial partition-
ing to achieve high accuracy, which often results in increased
memory requirements [17]. For instance, using an Octree
for explicit representation on the ModelNet10 at a resolution
of 2563 results in a memory usage of 70GB [10], making it
unsuitable for deployment on resource-constrained devices.

To mitigate memory usage while enhancing accuracy, im-
plicit representation techniques [13, 16, 18] that leverage neu-
ral radiance fields (NeRF) [8] have been introduced. These
methods typically yield more realistic reconstructions and
high-quality images by processing new viewpoints through
implicit neural networks. However, this approach has its
downsides: training neural networks for implicit represen-
tations is computationally intensive. Consequently, it is not
suitable for deployment on resource-constrained devices.
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Figure 2: Existing workflow and our proposed; (a) Using explicit methods to guide explicit sampling; (b) Using
explicit methods to sample for the implicit neural representation module; (c) Using implicit surface analysis
methods to guide sampling for the implicit neural representation module(Active Mapping); (d) Our proposed
system that combines explicit and implicit sampling approaches.

And it is also difficult to locate sparse data regions in the
environment. Although H2-Mapping [6] enables real-time
representation on edge devices, it still demands powerful
edge devices and neglects the notable transmission overhead
in typical mobile-edge setups, assuming data is both sam-
pled and processed on the edge server. No existing systems
have considered the long latency when deploying the whole
processing pipelines of implicit 3D reconstruction across the
mobile and the edge servers. To address this problem, we pro-
pose a new 3D reconstruction system named Eros (Figure 1),
whereby several challenges must be addressed to alleviate
the limitations of existing representation methods.

Firstly, from the data perspective, how to quickly iden-
tify and sample valuable data on the mobile side: 3D
reconstruction involves iterating between sampling new ar-
eas from previously unobserved areas within the environ-
ment and scene representation. Explicit sampling such as
periodic sampling or view field overlap-based sampling [6]
are simple heuristic rules that struggle to accurately capture
sparse data regions. Other sampling methods that rely on
implicit surface analysis [9, 15] can accurately locate sparse
regions but encounter issues with long latency. It is worth
noting that, unlike active mapping approaches, we do not
consider the motion planning of the device. Instead, we focus
on how to perform reconstruction in real-time and with high
bandwidth efficiency from a given data stream. Integrating
explicit and implicit sampling can harness the advantages
of each approach; however, it requires careful design for se-
lecting methods, taking into account the trade-off between
high-quality data sampling and additional computational
overhead.

Secondly, from the computation resource perspective,
how to effectively utilize the computing resources on the
edge side for data processing: After sampling and trans-
mitting the data to the edge, it is initially stored in a data
buffer before being retrieved for further processing. The data
cache is typically accessed multiple times to ensure consis-
tent construction performance. However, prioritizing data

that enhances overall reconstruction performance poses a
significant challenge. To begin with, effectively optimizing
performance by utilizing the order of data processing is a
complex task. Moreover, since the NeRF network may lose
prior scene representations, determining how to appropri-
ately allocate the computational weight for each data item
to accelerate performance and establish a robust scene rep-
resentation becomes a challenging issue.
Thirdly, from the communication perspective, how

to minimize communication overhead in a mobile-edge
environment while still maintaining reconstruction per-
formance: Current 3D reconstruction methods often over-
look transmission overhead, which limits their practical ap-
plication in real-world settings. The concept of Region of
Interest (ROI) has been utilized in video analytics [4] to lower
transmission costs. However, obtaining the ROI region in
the 2D image coordinate system based on 3D information in
a lightweight manner is challenging, particularly when deal-
ing with data such as point clouds or voxels and identifying
these ROI regions based on feedback from NeRF networks.
Therefore, a new mechanism must be developed to effec-
tively select high-quality data patches while ensuring robust
reconstruction performance. To address the aforementioned
challenges, our key contributions are as follows:

• We propose Eros, to the best of our knowledge, the
first system that enables edge-assisted implicit neural
3D reconstruction. Eros demonstrates the capability to
achieve low-latency reconstruction under both normal
and bandwidth-constrained conditions.

• We introduce an innovative hybrid data sampling ap-
proach that combines explicit and implicit methods,
significantly improving the quality of the sampled data.

• We implement a value-based representation module
that efficiently organizes computational resources to
process data from the data cache to reconstruct the
scene, significantly accelerating the reconstruction
process.
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• We design a novel ROI-based transmission mechanism
for 3D information, thereby reducing unnecessary data
training and transmission overhead.

Devices Implicit representation Implicit surface profiling ratio

RTX 2080Ti 0.348 0.765 2.198
RTX 3090 0.344 1.076 3.138

Jetson AGX Orin 0.498 2.849 5.720
Jetson Orin NX 1.083 3.919 3.619

Table 1: Time cost (s) of the implicit representation and
implicit surface profiling module.

2 BACKGROUND AND MOTIVATION
In this part, we will introduce the background of 3D recon-
struction and analyze its workflow and characteristics.

2.1 3D Reconstruction
3D reconstruction is a technique that creates a 3D model of
an environment from data collected within the environment.
It involves two modules: 1) Sampling module that gathers
RGB, depth, and pose information; 2) Representation module
that reconstructs the scene using this data.

There are typically two types of representation techniques:
explicit and implicit representation. Explicit representation
refers to directly constructing 3D objects using various data
representations, such as point clouds and voxels. Implicit re-
construction, on the other hand, represents 3D objects using
continuous functions, allowing for smooth shapes without
explicitly defining their surfaces. This approach leverages im-
plicit neural representations (INRs), where neural networks
are used to express these continuous functions. INRs train
a neural network to predict light behavior from various an-
gles and generate realistic images from novel viewpoints. It
provides a way to represent both light (color) information
and spatial (depth) information effectively, with low memory
requirements and high reconstruction accuracy. However, it
also has drawbacks, as the process requires network training
and demands significant computational resources. Therefore,
in practical implementations, data is often offloaded to edge
servers and choosing which data to send is important.
Previous work on explicit representation methods has

typically relied on heuristic sampling approaches, such as
timing or view overlap. Similarly, implicit neural reconstruc-
tion methods have not specifically developed lightweight
strategies for frame selection that can be deployed on mo-
bile devices. Recent advances in implicit surface analysis
techniques have enabled effective analysis of sparse regions
within surface data [15]. However, as shown in Table 1, the
computational complexity makes these methods suitable
only for active neural mapping and unsuitable for assessing
keyframe transmission under frame refresh rate constraints.

In summary, there are three types of commonly employed
3D reconstruction paradigms, as shown in Figure 2. In the

Figure 3: The relationship between sampling data vol-
ume and performance in different methods.

next sections, we perform a detailed performance analysis
of the existing methods and highlight their limitations.

2.2 Performance and latency comparison
between explicit and implicit sampling

In this section, we analyze the impact of the samplingmodule
on the entire 3D reconstruction workflow. For scene repre-
sentation, we use a 9-layer MLP [8] for scene representation
on the Jetson Orin AGX2 and compare several different sam-
plingmethods based on their reconstruction coverage quality
on the Replica dataset.
As shown in the Figure 3, when sampling 0-30 data sam-

ples, there is no clear difference in the coverage rate between
the explicit and implicit methods. Subsequently, the implicit
profiling module requires nearly 120 data samples to achieve
coverage rates of 96%, while the explicit methods require over
200 data samples for similar performance. This demonstrates
that implicit profiling can effectively identify high-value data,
resulting in greater sample efficiency.
Despite its advantages, the surface profiling process fol-

lowing the representation stage is computationally expen-
sive. During this period, the NeRF networks utilize the re-
constructed mesh to identify sparse data regions, resulting
in high computational demands. We present a benchmark in
Table 1 showing the latency required for both representation
and surface profiling across different devices. It is evident
that on all devices, the time taken for one round of the sur-
face profiling process exceeds that of one round of implicit
representation by more than two times. This presents an op-
portunity to incorporate explicit sampling during the surface
profiling process.

2.3 Communication and computation
overhead for implicit representation

After sampling, valuable data is sent to the edge server for
further NeRF training. We record the data buffer on both
the mobile device and the edge end using different explicit
samplingmodes, including periodic sampling at rates of 5 FPS
and 2 FPS, as well as view overlap rate-based sampling with
overlap ratios of 0.8 and 0.9, as mentioned in subsection 2.1.
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Figure 4: Communication and processing data flow un-
der various samplingmodes. (vertical axis unit:frames)

In Figure 4, we can find that in various sampling modes,
there are often data processing buffers on both the sending
side and the receiving side, especially when we need high
FPS or view overlap rates. The data flow is mainly blocked
on the edge. The data buffer at the edge side provides us
with a cue to prioritize the transmission and processing of
high-value data for reconstruction.
Opportunities for improvement: After determining the
new data sent to the edge device in this round, due to the
forgetfulness of implicit representation [15], some selected
data from the historical dataset are combined with new data
as input for training the implicit reconstruction module net-
work. This makes it worthy to consider prioritizing which
data to select for retraining to ensure effective utilization of
computational resources.

3 DESIGN OF EROS
3.1 System overview
We design Eros, an edge-assisted NeRF system for mobiles,
achieving low latency and bandwidth costs. Eros encom-
passes twomodules as shown in Figure 5 andwe consider sys-
tem optimization attempts from two dimensions: keyframe
selection, communication and computation optimization.

3.2 Keyframe selection
3.2.1 Local Mapping and Keyframe Selection. We first map
the depth image into 3-dimensional space by applying a co-
ordinate transformation of the camera’s pose. We skip pixels
that exceed our set maximum depth, as depth information be-
yond this distance often has significant noise. After this, we
discretize the point cloud into a 3-dimensional voxel space
based on a specific voxel grid size. We consider whether
we can select a frame as a keyframe for processing based
on whether the proportion of voxels in the current frame

that are not present in the historical map exceeds a certain
threshold.
3.2.2 Quick Implicit Surface Profiling. Based on Active Neu-
ral Mapping [15], we explore whether surface profiling meth-
ods can be used to identify sparse regions in small areas of the
data, while still ensuring that explicit methods are employed
to sample and process larger regions effectively. After iden-
tifying low-quality surface areas through analysis, we then
return their position, direction, and area size to the mobile
end. Upon receiving the evaluation results from the network,
the mobile device retrieves the corresponding matching data
from the local unsent data cache and retransmits it.
3.3 Communication and computation

optimization
3.3.1 Value-based Ranking. Unlike the traditional first-sample,
first-transmit, first-train approaches, we try to prioritize
sending data groups with higher reconstruction value and
evaluate each data group’s value.
3.3.2 Optimized-frames Organization. Similar to𝐻2−𝑀𝑎𝑝𝑝𝑖𝑛𝑔,
all voxels will be repeatedly covered multiple times to se-
lect the optimized frames for each training iteration. But we
struggle to choose loss-high voxels for one additional train-
ing round. This approach increases the training iterations
for regions with high loss, allowing more computational
resources to be used efficiently.
3.3.3 ROI-based Transmission. After keyframe selection and
low-quality region filling, we obtain a series of data sets to
be sent to the edge, including depth, color images, and the
corresponding poses with timestamps. However, there is still
a lot of redundant information among these data sets, such as
noise regions in the depth maps beyond a certain threshold,
as discussed before in 3.2.1, and unavoidable overlap between
frames, among other issues. Therefore, we use voxel infor-
mation and sparse regions to mask the selected keyframes
for ROI-based transmission.
4 EVALUATION
4.1 Evaluation settings
We use the Intel Next Unit of Computing (NUC) with 16GB
of memory and Ubuntu 18.04 as the mobile side, and use
the Jetson Orin AGX2 (64GB) as the edge side. The mobile
side and the edge side are connected in Robot Operating
System(ROS). We utilize implicit representation for the 3D
reconstruction task, employing the Replica dataset [12], a
popular virtual dataset, and the ScanNet dataset [1], a widely
adopted real-world dataset. We use the base representation
algorithm same as H2-Mapping [6]. To simulate scenarios
in low bandwidth conditions, we limit the bandwidth to 2
MB/s by applying a router port bandwidth constraint.
Baselines: 1) Periodical sampling and representation: a

sampling method that samples data with a fixed time interval
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Figure 5: System Overview of Eros
.

for scene representation. 2) H2-Mapping [6]: we use the same
keyframe sampling strategy that samples data based on the
field overlap ratio between two consecutive keyframes. 3) Im-
plicit Profiling: In particular, we introduce a sampling method
guided solely by implicit surface analysis as a baseline.
4.2 Overall performance
In this experiment, we validated the performance of our
Eros under different performance requirements and environ-
mental conditions. For Figure 6a, Figure 6c and Figure 6d,
we used the ScanNet dataset to simulate a data stream, and
the total playback time of the data stream is set to 40 sec-
onds. For Figure 6b, we used the real-world testbed to collect
data. We recorded the performance changes from the start
of reconstruction until the end of sampling. In the first two
experiments, we set high bandwidth between the mobile side
and the edge server, then performed reconstruction tasks
using two different mechanisms: a) prioritizing high cover-
age rate, b) prioritizing low latency. The results are shown
in Figure 6a and Figure 6b. We also show the performance
of Eros under low bandwidth conditions in Figure 6c.
For the first experiment, we use the 5 FPS periodic sam-

pling method and H2-Mapping with a 0.9 view overlap rate.
A more detailed bandwidth consumption is shown in Fig-
ure 6d. We can know that the time required by our system
to reach 98% coverage is near 72% that of all the baselines
from Figure 6a. Our system can achieve low latency with
high coverage requirements. Compared to methods that rely
solely on implicit profiling, although there is some bandwidth
pressure, it clearly offers the advantage in terms of latency. It
can also be observed from Figure 6d that our system can only
consume 34% of the maximum bandwidth compared to the
other two baselines. This is because we use an explicit and
implicit sampling framework to ensure that only valuable

frames are selected, and we use ROI-based data transmission
to remove intra-frame redundant pixels.
In Figure 6b, we conduct our study on a real-world test

bed to demonstrate the performance of our low-latency re-
construction system. In this experiment, we set the periodic
sampling to 1.25 FPS and H2-Mapping to a view overlap rate
of 0.35. Correspondingly, we reduced the explicit sampling
rate in our system to 0.6 to meet real-time requirements.
By the end, our system achieves a coverage rate of 92.256%,
while the baselines only reach below 89%. It shows that our
system can prioritize the usage of valuable data for transmis-
sion and processing to enable real-time reconstruction.
Finally, we demonstrated that our system is capable of

maintaining good performance under low bandwidth condi-
tions. We can see in Figure 6c that the latency of our system
is near 58% of the baselines. Our system is almost unaffected
by the reduction in bandwidth, while the latencies of the
other two baselines increase significantly. This is mainly
because our hybrid sampling module and ROI-based data
transmissionmodule greatly reduce bandwidth consumption,
invariant of the network conditions within the environment.
5 FUTURE DIRECTIONS
Our system demonstrates the feasibility of edge-assisted
dense mapping and reveals several promising avenues for
future research. First, robustness remains a key challenge,
prompting the need for adaptive modules that can dynami-
cally respond to varying network and resource conditions
while maintaining optimal performance. Second, task of-
floading warrants deeper exploration: since dense mapping
depends on high-quality localization, developing synergistic
offloading strategies for both tasks within a mobile-edge-
assisted framework is essential. Finally, extending 3D re-
construction for richer scene understanding stands out as a
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Figure 6: Eros’s performance with different bandwidth and optimization goals.

particularly exciting direction, opening up new possibilities
for advanced applications in robotics, augmented reality, and
beyond.

6 CONCLUSION
In this paper, we introduce Eros, an edge-assisted 3D re-
construction system that features fast reconstruction, high
coverage rate, and low bandwidth usage. In Eros’s design, we
first explore the opportunity to efficiently sample data from
the data stream on the mobile side. Then, we prioritize the re-
construction process with carefully selected high-value data
as well as historical data. In order to reduce the bandwidth
consumption, we further develop ROI-based data transmis-
sion specially designed for 3D data samples. We prototype
Eros with a mobile-edge system and validate its real-time per-
formance in various scenarios with different requirements.
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