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Abstract—Rapid development of bike-sharing systems has
brought people enormous convenience during the past decade.
On the other hand, high transport flexibility comes with dynamic
distribution of shared bikes, leading to an unbalanced bike
usage and growing maintenance cost. In this paper, we consider
to rebalance bicycle utilization by means of directing users to
different stations. For the first time, we devise a trip advisor
that recommends bike check-in and check-out stations with joint
consideration of service quality and bicycle utilization. From
historical data, we firstly identify that biased bike usage is
rooted from circumscribed bicycle circulation among few active
stations. Therefore, with defined station activeness, we optimize
the bike circulation by leading users to shift bikes between
highly active stations and inactive ones. We extensively evaluate
the performance of our design through real-world datasets.
Evaluation results show that the percentage of frequent used
bikes decreases by 33.6% on usage number and 28.6% on usage
time.

I. INTRODUCTION

With the development of the economy, pollution and
destruction caused by human activities to natural environment
was becoming more and more serious in recent years, and
therefore sustainable development has become a consensus
of the international community [1, 2]. In this circumstance,
bike-sharing systems (BSS) are developed as a replacement
for short vehicle journeys due to its low pollution, low energy
consumption and high flexibility. In addition to the reduce of
need for personal vehicle trips, public bike-sharing systems
can not only help extend the reach of transit and walking
trips, providing people with a healthy transportation option,
but also trigger greater interest in cycling, and increase cycling
ridership. By the end of 2016, over 1,100 cities actively
operate automated bike-sharing systems deploying an estimate
of 2,000,000 public bicycles worldwide [3].

With bike-sharing systems, a user can easily rent a bike by
a smart card at a nearby station, use it for a short journey,
and return it at another station. Despite high convenience
and flexibility, a notable problem in bike-sharing systems is
unbalanced bike usage, which means a small part of bikes are
used much more frequently than others. Bikes that are used too
much are vulnerable and hence increase repair bills and lead
to potential service denied. In 2012, the very first bicycle from
Hangzhou bike-sharing system became a permanent exhibit in
the Low-Carbon Technologies Museum in China. This bicycle
is reported to be rented for over 6,000 times and ridden
for more than 20,000 kilometers in 3 years. Similarly, the

most tireless bicycle from 2016 has been rented for 5,616
times, over 15 times on average each day. According to
Hangzhou public bike-sharing company, the average life of
their bicycles is less than 4 years due to longtime high load
operation and lack of timely renewal and maintenance. On the
contrary, average life of private bicycles is 10 years and above.
Meanwhile, the cost of repair and labor accounts for a large
proportion in overall operating expenses. In 2012, the repair
cost of Hangzhou bike-sharing system was near 6 million
yuan [4]. In Washington, D.C., the annual maintenance cost
was $200 to $300 per bike in the year of 2012 [5]. The bike
shops in New York completed 5,604 bike repairs in April 2017
with a total number of 9,367 bikes in the system [6].

Intuitively, operators can balance bike usage by leading
users to use those unpopular bikes based on usage counts
of each bike. However, leading users to rent a specific bike
is not practical. Based on our analysis on real bike-sharing
dataset from Hangzhou, we observe that bikes located in
some stations are much more likely to be used and moved
to another active station. Hence, by introducing the station
property of activeness, we transform the original problem
of picking bikes to recommending check-in and check-out
stations. By using the proposed trip advisor, we aim to guide
users to ride bicycles between stations with different levels
of activeness, therefore avoiding circumscribed circulation
among active stations. For users, an advisor can not only help
them choose stations with adequate bicycles, but also ensure
a higher success rate when returning bikes. Also, different
incentive mechanisms can be leveraged to better prompt the
balancing process.

In this paper, we propose a trip advisor that recommends
the optimal pair of stations to rent and return bikes. Through
guiding the actions of users, it can help balance bike usage,
reduce operation cost and enhance user experience. Firstly, to
make sure users can find bikes and available lockers, success
rates of rental and return should be predicted for each station.
Different from traditional demand prediction methods, we
present probabilistic forecast methods on a minute timescale
instead of predicting the exact stock number on sub-hour
granularity. Secondly, in order to balance bike usage through
station recommendation, a station property must be associated
with bike usage frequency. We define activeness for each
station by exploiting the idea of PageRank. These two parts
constitute the core content of the trip advisor framework.



Table I
PRIMARY FIELDS IN THE BIKE-SHARING DATASET.

user id rent netid tran date tran time
8601940 9926 20150601 070641

return netid return date return time bike id
9205 20150601 071635 1708133

In summary, in this paper we propose a novel utilization-
aware trip advisor to lead users to help balancing bike usage
without compromising the quality of service. We highlight our
key contributions as follows:
• We propose a probabilistic forecast method which adopts

Monte Carlo simulation and random forest model to
improve prediction accuracy.

• We introduce the concept of activeness to link bike
usage frequency to station property which utilizes the
topological characteristics of bike sharing network and
the relative check out amount of each station. Meanwhile,
we dynamic update the activeness to take the effect of the
advisor on system into account.

• We present a novel framework to balance bike usage with
the help of users and validate our proposed method with
real-world human mobility datasets.

II. PRELIMINARY ANALYSIS

In this section, we first present some statistics and prelim-
inary mobility analysis derived from the bike-sharing dataset
from Hangzhou City in China. Inspired by insights obtained
from the study we propose our utilization-aware trip advisor.

A. Dataset Description

The Chinese city of Hangzhou has the world’s largest
public BSS with more than 3300 stations and over 84,000
shared bicycles [7]. Since deployed in May 2008, thousands
of bicycles have been rented for more than 700 million times.
The concept of public bicycles has since spread to 30 other
provinces in China and around 175 cities nationwide.

The system is classified as a third-generation bike-sharing
program due to its IT-based system, automated check-in
and check-out, and distinguishable bicycles and docking
stations [8]. The system automatically collects user ID, bicycle
ID, check-in and check-out time etc. every time users rent or
return bikes. The dataset used in this paper was collected in
June 2015, which contains 58,647 bikes and 3,329 stations.
Each bike-sharing trip contains an origin and a destination
with information of locations and timestamps. The primary
fields of the dataset are shown in Table I.

B. Station Distribution

Bike stations in Hangzhou are located within the urban area
spanning over 600 square kilometers; the average distance to
the closest neighboring station being 300 meters [8]. Figure 1
shows the probability distribution function (PDF) of the
number of stations within a certain range of one station. From
this figure, we notice that half the stations have more than
3 neighbors within the range of 300 meters, and typically a

station may have 8 neighbors within the range of 500 meters.

Figure 1. Station distribution.

This provides a reference to the range settings when
designing the trip advisor. If we only consider stations within
a very small range, there will be few stations to be selected.
Otherwise, the number of candidate stations will increase
significantly but users will suffer from extra walking distance.
Here, we set the range threshold to 500 meters which provides
8 stations in expectation.

C. Station Diversity

After we are sure that there are enough stations to be
selected near the origin and destination, we need to find out
whether the stock levels of those stations are quite different
from their neighbors. If the stock levels are almost the same,
there is no need to predict the stock level of each station. The
success rate of rental and return would be exactly the same
for all the candidate stations.

Figure 2 shows the cumulative distribution function (CDF)
of the number of unbalanced stations around each station
in June 2015. For each station, if the difference in stock
level between it and a station located within 500 meters
exceeds 50%, it is considered as an unbalanced event. If the
accumulated time of unbalanced events is longer than h hours
in a month, the unbalanced station number increases by 1.
Here, let h be 120, 180 and 240. From Figure 2, we notice
that when h is set to 180, there are more than 61% of stations
have at least 1 station nearby that is distinct from them in
stock level. When h gets smaller, the percentage of stations
that have at least 1 unbalanced station nearby is obviously
increased. When h equals to 240, the corresponding percentage
is 42%. According to the above analysis results, the stock level
of stations within a small range could be quite different from
each other, which means that it’s necessary to predict the stock
level and ensure that users can rent or return bikes successfully.

D. Unbalanced Bike Usage

After the analysis of station distribution and station un-
balance, the most essential issue is bike usage unbalance.
Because historical records contain the ID of bikes, we can
extract the usage characteristics by summing up the number
of occurrences and trip durations of each bike. The preliminary
results are depicted in Figure 3. As shown in Figure 3(a), 57%
of bikes are used for less than 150 times in a month, less than
5 times per day on average. However, about 10% of bikes
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Figure 2. Station unbalance.

are used more than 310 times in a month, which is twice as
frequent as less used bikes. From Figure 3(b), we can see
that the usage time of 64.5% bikes is less than 57 hours in
a month while that of 10% bikes is over 115 hours. These
statistics clearly indicate that the usage of bikes is unbalanced
and a small part of bikes have much higher usage frequency
and longer usage time than others, which is the leading cause
of bike damage [9].
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Figure 3. Usage unbalance.

Further, we describe the usage characteristic by using
the idea of the Lorenz curve. The Lorenz curve plots the
percentage of total income earned by various portions of the
population when the population is ordered by the size of their
incomes [10]. In Figure 4, the vertical axis represents the
cumulative percentage of bikes (in ascending order of usage
number/time), while the horizontal axis shows cumulative
percentage of bike usage number/time. We find that 60% less
used bikes only contribute about 30% usage time and 33%
usage number. Thus, it can be concluded that bike usage
unbalanced problem does exist, and we need to design a trip
advisor to guide users to help balancing bike usage.

E. Insight
In this part, we offer some insights into explaining the

observed bike usage unbalance problem. A direct and effective
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Figure 4. Cumulative contribution rate of usage.

Table II
MOST FREQUENTLY USED BIKES.

bike id 687500 683676 687119
usage num 809 783 780

bike id 1502964 688515 1500966
usage num 630 616 608

bike id 687500 687119 683676
usage time (h) 333.67 319.16 314.56

bike id 1501877 1502628 1502407
usage time (h) 259.63 258.10 257.88

way to explore the reasons is to identify those most frequently
used bikes and observe their mobility patterns. From the
historical check in and check out records, we have calculated
the usage number and usage time of bikes and the results
are shown in Table II. We found that the top 3 bikes on
usage number is consistent with those on usage time. The
most frequently used bike numbered 687,500 has been rented
809 times in a month with a total time of 333.67 hours.

Figure 5. Geographical distribution of stations that that top 3 frequently used
bikes have been visited.

It’s possible that the usage frequency of each bike has close
relation with the stations it has been visited. Thus, the stations
where top 3 frequently used bikes have been checked out are
found and the amounts of visits are counted. The geographical
distribution of those stations is depicted in Figure 5. From this
figure, we notice that the number of visits in main urban area
is much higher. The purpose of rental in main urban areas
could be going to work or school or even buying breakfast.
The significant features of this kind of rental are short trip,
high efficiency and quick turnover. In this case, bikes are



usually rented from one station and then quickly returned
to another station. After being returned, bikes are likely to
be checked out again and flow to the next station quickly.
Such preliminary results demonstrate that the main reason for
unbalanced bike usage is the continuous circulation of bikes
among active stations. On the other side, bike utilization can
be balanced by introducing flows between active stations and
inactive stations. How to define the activeness of stations will
be elaborated in the section below.

III. METHODOLOGY OVERVIEW

In this section, we first formulate the problem of station
recommendation, and then show the details of the proposed
trip advisor framework.

A. Problem Definition

Considering a bike-sharing system consisting of stations,
bikes and users, the inputs of trip advisor are user requests
including origin location lo, destination location ld and leaving
time tl. The user requests are stochastic and can occur at
every station at any time. Let So = so1, so2, ..., son be
a set of stations in R meters zone around the origin and
Sd = sd1, sd2, ..., sdn be a set of stations near the destination.
Each station has its location (e.g., latitude and longitude) and
stock level ri with sub-hour granularity, where i ∈ So, Sd.
Based on user inputs and current status of the system, the
output of trip advisor is a pair of optimal stations (s∗i , s

∗
j )

for users to rent and then return a bike, where s∗i ∈ So and
s∗j ∈ Sd. The problem is dynamic because decisions can be
adapted over the planning horizon. In decision making process,
the first step is to filter the stations in So and Sd based on
success rate of rental and return. Hence, we will obtain a
middle variable S

′

o and S
′

d representing candidate stations after
probabilistic forecasts. The important notations used in this
paper are listed in Table III.

Table III
SYMBOLS AND DEFINITIONS.

lo, ld location of origin/destination
tl leaving time
So, Sd stations near the origin/destination
R range
ri stock level of station i ∈ So, Sd

S
′
o, S

′
d candidate stations after probabilistic forecasts

B. General Framework

Before leaving, users can send a query including their
origin, destination and leaving time to the trip advisor and
then get the recommended stations for rental and return. The
key problem is how to guide the users to balance bike usage
through station recommendation while not affecting the user
experience. In this section, we will introduce the framework
of our method, as shown in Figure 6. The framework is
comprised of two major components: probabilistic forecasts
and activeness calculation.

Figure 6. Framework of the trip advisor.

Figure 7. The idea of probabilistic forecasts.

1) Probabilistic Forecasts: In order to encourage users to
use the advisor and continue to help balancing bike usage, we
need to firstly make sure that users can rent or return bikes
successfully. Therefore, the first component, probabilistic
forecasts, is designed to solve the no-service problem and
guarantee the higher success rate for rental and return when
users arrive at the stations. No-service means the situations
in which a user can’t find available bikes to rent, and those
in which he/she finds there’s no parking spot to return. This
problem is mainly caused by the asymmetric and fluctuating
user demand among the stations. For users, they may know
where the nearest station is, but what they really want to
know is the probability of successfully renting or returning
bikes when he/she arrives there. To obtain the success rate
at a precise moment, simply predicting the forthcoming user
demand on half-hour granularity is not enough to meet the
above requirement. The component of probabilistic forecasts
is needed to predict the stock level on a minute timescale and
further derive success rate through the Monte Carlo method.

The process is illustrated in Figure 7. At the beginning, the
stock levels of candidate stations near the origin/destination



are known. The forecasts consist of two parts. The first part
is coarse-grained prediction using random forest model, the
second part is fine-grained prediction based on Monte Carlo
method.

Here, we take predicting return success rate at arriving time
as an example to elaborate on the details. Let [t] represent
the rounded time of t to the nearest 30 minutes before. At
the rounded current time [tnow], we already know the stock
status ri of station i within R meters of the destination.
Firstly, we predict the base check in and check out demand at
each station with sub-hour granularity by using random forest
model. Random forests are an ensemble learning method for
regression, that operate by constructing a multitude of decision
trees with different samples and different initial variables. The
final output is the mean prediction of the individual trees.
We apply the random forest theory to model and predict the
users behaviors with a joint consideration of time factors,
meteorology and real-time bike availability[11]. Let CIi(t)
and COi(t) be the predicted check in and check out number
of station i within a temporal window (t, t+T ), where i ∈ Sd
and T = 30min. The coarse-grained prediction of stock level
at the rounded arriving time [ta] is as follows:

Stocki([ta]) = ri +

[ta]−T∑
t=[tnow]

(CIi(t)− COi(t)) (1)

Then, to get more accurate stock number, we adopt the
Monte Carlo method to simulate the bike rental and return
process at the temporal window ([ta], ta). The general method
of Monte Carlo is to obtain numerical results through repeated
random sampling. We assume that the number of bikes rented
or returned in the predicted time window follows a Poisson
distribution. Given the station i with the predicted bike check
in and check out number CIi([ta]) and COi([ta]) in the time
window ([ta], [ta] + T ), we divide time delta into T small
consecutive time intervals δt = 1min. The number of bikes
returned to this station in each δt, noted as x, follows a Poisson
distribution with mean parameter λ = CIi([ta])/T :

P (x = k) =
e−λλk

k!
, k = 0, 1, 2, ... (2)

For each simulation, we generate a stochastic sequence Q+i

from the return distribution to simulate the bike return events
of each station. Similarly, we generate a stochastic sequence
Q−i for the bike rental events. Afterward, we randomly
arrange the return and rental events based on the two sequences
and update the stock number over time. If the stock number
exceeds the capacity of the station, we mark it as an over-
demand station and stop the process.

We repeat the simulation for M times to count the over-
demand occurrences U . In the end, we estimate the probability
of successfully returning bikes at arriving time as the rate:

p = 1− U

M
. (3)

The success rate for bike rental at leaving time can be
calculated in a similar manner.

In summary, the main idea of probabilistic forecasts is
to simulate the probabilistic process of check in and check
out and derive the probability of success-of-service across
a sufficiently large number of simulations. We choose the
stations as candidate stations S

′

o, S
′

d on the basis of whether
its success rate is larger than a threshold P , which is set as
0.8 in our work.

2) Activeness Calculation: For the candidate stations S
′

o,
S

′

d, we need to further decide which is the best pair of stations
to recommend. Our ultimate goal is to balance bike usage and
extend their lifespan, but we can only lead users to a station
instead of recommending a specific bike. Therefore, we have
to concern about how to link up the bike usage characteristic
with a certain property of the station, such as activeness.

According to the previous analysis, active stations are
characterized by the following properties: (1) Bikes returned
to this station are easily checked out and flow to many
other stations; (2) The stations that those bikes flowed to are
also very active. These properties remind us of the way to
measure a web page’s importance. PageRank is an algorithm
used by Google Search to rank websites in their search
engine results [12]. According to Google: PageRank works
by evaluating the quality and quantity of links to a web page
to determine a relative score of that page’s importance. The
idea that PageRank brought up is that more important websites
are likely to receive more links from other websites.

In bike-sharing systems, activeness can be defined to
measure the active level of bike usage for each station based
on the idea of PageRank. We begin by picturing the station
network as a directed graph, with nodes represented by stations
and edges represented by the bike flow (rent to return) between
them. The underlying assumption is that more active stations
in the network are likely to send more links to other stations.
This makes sense because bikes do tend to be checked out
extensively to many other stations at active stations and the
bike usage in stations with more links out are usually more
frequent. But this is only a start, the bikes must continue
to flow to active stations so they can enter a high-speed
circulation and be repeatedly used. This leads to the next
assumption that stations that are themselves active weigh more
heavily and help to make the stations that link to them active.
If bikes rent from one station to stations with lower activeness,
the bikes are likely to stay there and it will take a long time
for them to be checked out again. Therefore, this station may
have low activeness as well. Finally, the activeness of station
i is given as

A(i) =
1− α
N

+ α
∑

j∈out(i)

n(i, j)A(j)

nin(j)
(4)

where
• A(i) is the activeness of station i,
• α is a damping factor which can be set between 0 and 1,
• N is the number of stations,



• n(i, j) is the number of bikes rent from i and return to
j,

• nin(j) is total number of bikes return to j and
• out(i) is the set of stations that have bikes rent from i.
So we can see that the activeness of station i is recursively

defined by the activeness of those stations which are linked to
by station i. If station i links to a lot of stations, the common
belief is that station i is active. The activeness of station j
which station i links to does not influence the activeness of
station i uniformly. Within this algorithm, the activeness of
a station j is always weighted by n(i, j)/nin(j). This means
that the more return bikes station j has, the less will station
i benefit from the link to station j. In addition, if a node has
no ingoing edges, it cannot transfer its activeness to any other
stations. Therefore, a damping factor is added for giving each
node a probability that a bike can be returned to this station
from any other station, each station has 1/N probability to be
the source.

In the above formula, flow patterns in the station network
is the main consideration, but the rental scale of each station
has to be concerned as well. Stations with large amount of
rentals will certainly affect the mobility of more bikes. Bikes
in those stations are usually easier to spread to more stations
which is an expression of high activeness. So we adopt the
normalized relative check out number to indicate the rental
scale and suppose that stations with large rental scale are more
active. Therefore, we rewrite the activeness of station i as
following:

A(i) = (1− α)ri + α
∑

j∈out(i)

nin(i, j)A(j)

n(j)

ri =
nout(i)/c(i)∑N
j=1 nout(j)/c(j)

(5)

where c(i) is the capacity of station i and nout(i) is the
absolute check out number of station i. In this way, bikes are
more likely to come from stations with higher relative check
out number. By introducing this prior distribution, this method
provides a more comprehensive measure of the activeness of
stations.

Figure 8. An example of BSS network.

Then, we use a simple example to better explain the process
of activeness calculation. As shown in Figure 8, we regard

a small network consisting of just 4 stations A,B,C and D
referencing each other. When bikes move from station A to
B, we add a directed edge between node A and node B in
the graph. The weight of each edge represents the amount of
bikes. For instance, there are 12 bikes rented from A and then
returned to B. The relative check out numbers are noted in the
center of the circles. In our model, each station should transfer
its activeness to the station that links to it. Let T denote the
transition matrix of the graph and Q denote normalized relative
check out numbers of the stations, we get the following form
of the new transition matrix M by:

M = (1− α)Q+ αT (6)

Suppose that initially the importance is uniformly dis-
tributed among the 4 nodes, each getting 1/4. Denote by v the
activeness vector of stations, we have the following equation:

vi+1 =Mvi, i = 0, 1, 2, ... (7)

where v0 = [1/4, 1/4, 1/4, 1/4]T . We can iterate the process
until the sequences of v0, v1, ..., vi tends to the equilibrium
value v∗ which is the activeness of our station graph. The
damping factor α is to balance the influence of network
topology and check out amount. The exact value of the
damping factor α admittedly has effects on the final results.
The activeness of stations under different α is shown in
Figure 9. From this figure, we notice that the most active
station is D and the activeness of A increases as α gets larger
which means more emphasis on network topology.
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Figure 9. Activeness of stations in the example.

Finally, to obtain the optimal pair of stations (s∗i , s
∗
j ), we

select stations according to the following equation:

(s∗i , s
∗
j ) = argmax |A(si)−A(sj)| (8)

where si ∈ S
′

o, sj ∈ S
′

d. If users strictly follow the advisor, the
activeness of stations could have a distinct change due to the
altered user behaviors. Taking into account this counteraction
of the advisor to the network, we update the activeness each
hour using the check in and check out records within the last
hour.

IV. EVALUATION

In this section, we empirically evaluate the performance
of our proposed method. We conduct experiments on dataset



of Hangzhou bike-sharing system in June 2015. There are
10,190,841 records, which contains 58,647 bikes and 3,329
stations. The data format is presented in Table I. The records
that check out and check in at the same station with a trip
duration less than 2 minutes are considered as noise data and
removed from the original records.

A. Probabilistic Forecasts

In our experiments, we use the results of probabilistic
forecasts as a condition for filtering stations, so we evaluate
the probabilistic forecasts step as a classification problem and
the metrics is as follows:

Precision and Recall: Given the results of whether stations
will be over-demand, precision and recall are defined as:

Precision =
|Npre−od| ∩ |Nreal−od|

|Npre−od|
(9)

Recall =
|Npre−od| ∩ |Nreal−od|

|Nreal−od|
(10)

where Npre−od represents the number of events that are
predicted to be over-demand, and Npre−od represents the
number of events that are really over-demand.

F-measure: F-measure is a weighted average of the
precision and recall. We use Fβ which weighs precision higher
than recall by setting β = 0.5:

Fβ = (1 + β)2
Precision ·Recall

β2Precision+Recall
(11)

We compare our proposed probabilistic forecasts method
with the following three algorithms:
• Historical average (HA) predicts the usage demand by

averaging the historical values for the same day and
time [13]. For instance, the check out number of Monday
08:00 a.m. equals to the average of check out numbers of
Monday 08:00 a.m. in the history and check out number
of 08:00 a.m. last day.

• Auto-Regressive and Moving Average (ARMA) be-
longs to time series analysis methods and has been
applied in demand prediction in [14]. It captures the
temporal patterns of rental and return by leveraging check
in/out information of the most recent p time windows.

• Random forest (RF) is the basic model where fine-
grained prediction is not considered. Therefore, this
method directly gives prediction of stock number instead
of probabilistic results for each station.

For the experiment setup, we divide the historical records
into two parts: the first 20 days for training and last 10 days
for testing. We extract over-demand events by comparing the
predicted stock with the threshold β multiplying the capacity.
β equals to 0.2 for check out prediction and 0.8 for check in
prediction.

The results are shown in Figure 10. As one can see
from Figure 10, the precision of RF MT method is as much
as 0.826, 25.9% more than the HA method. ARMA and RF
methods have relative higher precision but the recall of ARMA

precision recall f1-score

metric
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Figure 10. Precision, recall and F-measure for probabilistic forecasts.

is only 0.55, which is the lowest among the three methods. On
the other hand, we observe that the recall of HA is significantly
larger than other methods. This is because HA method tends
to predict more over-demand events, which makes most of
the real over-demand events can be predicted successfully.
Due to this characteristic, HA method are low in precision.
Among all the approaches, RF MT method demonstrates the
best performance both in terms of precision and F-score.
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(b) Activeness changes within 10 days.

Figure 11. Activeness changes with the time.

B. Activeness Changes

In the simulation, we notice that the activeness of stations
has different characteristics under different time granularities.
The results are shown in Figure 11. Figure 11(a) reflects
the activeness changes of Top 10 active and inactive sta-
tions within 10 hours. Different colors represent different
hours/days. Since check out number in one hour is uncertain



and random, the activeness of active stations fluctuates wildly.
Meanwhile, the difference between active and inactive station
looks rather small due to the short time interval. Figure 11(b)
reflects the activeness changes of Top 10 active and inactive
stations within 10 days. It shows relatively smooth changes of
activeness for active stations and there are deep gaps between
active and inactive ones. In the simulation, we update the
activeness of stations for each hour because the activeness
changes can be more obvious among hours especially when
only small part of users follow the advisor.

C. Bike Usage Distribution

To study the model performance on bike usage distribution,
we adopt PDFs of both usage number and usage time of
bikes as performance metrics. In addition, we also use average
(AVG) and standard deviation (STD) of usage number and
usage time for evaluation. As shown in Figure 12 and Table IV,
we compare situations when different proportions of the users,
with 100, 50 and 0 percent, respectively, follow the advisor. We
have two observations. Firstly, we can see from Figure 12(a)
that compared with 0%, the percentage of less used bikes
whose usage number belongs to [0,5] increases by 14.8%
and the percentage of frequent used bikes whose usage
number belongs to [15,40] decreases by 33.6% when the user
proportion is 100%. We find out that the average usage number
per day for each bike decreases from 7.656 to 6.901 when 50%
of the users listen to the advisor. When the percentage rises to
100%, the average usage number is 6.625 which is down by
13.5%. The reason is that the advisor tends to use bikes that
are rarely or never used more frequently. Since the total user
demand stays the same with the original records, the more
bikes are used, the smaller the average usage number will
be. Secondly, the average usage time per day becomes more
balanced as shown in Figure 12(b), especially for the bikes
with usage time larger than 6 hours per day. The percentage
of frequent used bikes whose usage number belongs to [6,15]
decreases by 28.6% when the user proportion is 100%. The
standard deviation of usage time for 100% and 50% proportion
of users are 1.99 and 2.04 while that of the historical records
is 2.39. These results prove that the proposed method can
help to balance both bike usage number and usage time. In
addition, with the proportion of users grows, the effect of usage
balancing gets better.

Table IV
AVG AND STD USAGE UNDER DIFFERENT PROPORTIONS OF THE USERS.

User
proportion

AVG of
usage

number

STD of
usage

number

AVG of
usage
time

STD of
usage
time

100% 6.56 5.60 2.11 1.99
50% 6.83 5.45 2.22 2.04
0% 7.57 6.16 2.50 2.39

D. Impact of Range Settings

Experimental results for the advisor derived in this paper
show high performance, demonstrating the potential of the

(a) Usage number distribution.

(b) Usage time distribution.

Figure 12. Usage distribution under different proportions of the users.

approach. To better understand the performance of the
proposed method, we further conduct an evaluation by varying
the range parameter in the model. The range R is the distance
allowed between stations and the origin/destination, which is
set from 500m to 1000m and 200m. Here, we assume that all
the users follow the advisor. The bike usage distribution under
different range settings are shown in Figure 13. When the
range is set to 200m, usage number between 5 and 15 per day
take the large proportion compared with other settings which
has benefit effect on usage balancing. However, there are only
few stations to be chosen when R = 200m and the simulator
failed to offer a suggestion for more than 15,000 time per day.
When the range is set to be 1000m, the experiment results
have been improved, but too large range settings will cause
added walking distance of users and seriously impact user
experience.

V. DISCUSSION

In this part, we provide some insights into the proposed
framework, and provide directions for future work.

A. Reward Design

Although the advisor can improve the success rate of rental
and return in a certain extent, it may also bring additional
distance cost to users when realizing the goal of balancing
bike usage. For the sake of keeping users’ enthusiasm, we can
design a reward mechanism to guide the use of shared bikes
in the future. For example, the reward can be given by the
function F (d) based on the extra distance d that users have to
pay. Here,

F (d) = k ∗ d,
d = [distance(s∗i , s

∗
j )−min(distance(si, sj))]

(12)



(a) Usage number distribution.

(b) Usage time distribution.

Figure 13. Usage distribution under different range settings.

where si ∈ O, sj ∈ D. Then, the mechanism transforms the
reward of the users into a discount of their public transit cards.
Detailed design and evaluation of such reward mechanism is
beyond the scope of the paper, and there are many references
on this subject [15, 16]. Through this way, users are motivated
to help balancing bike usage and it’s beneficial to build
intelligent and self-sustainable transportation systems.

B. Other Objective Functions

In practical applications, the advisor enables system opera-
tors to design other objective functions, thus achieving flexible
resource scheduling. For example, we could advise users to
rent bikes from active stations and still return them to active
stations. Therefore, the aging process of a small part of bikes
will be accelerated, allowing the regular upgrades of bikes
in the system. Otherwise, it’s unacceptable to the normal
operation of the systems that a large number of bikes need
replacing in the same time.

VI. RELATED WORK

Due to the increasing importance and rapid development
of bike-sharing systems, a great deal of attention has been
focused on a variety of problems that relate to bike-sharing.
There are various interesting research questions concerning
the establishment, operation and strategic problems of bike-
sharing systems [8, 17–22]. For example, Shaheen et al. [8,
17, 18] studied the history, business models and the social
and environmental benefits of bike-sharing in Europe, the
Americas and Asia. Parkes et al. [20] explored systems’
location, evolution, and their adoption. In addition, a novel
use case of the heterogeneous urban open data, namely bike-
sharing station placement, was proposed in [21, 22].

Another important research direction concerns user demand
prediction. Several papers firstly analyzed user behavior
patterns and then proposed predictive models to forecast
bike usage demand or stock level of stations in the future
period [14, 23–26]. The prediction methods are summarized
into two categories: station-centric model and cluster-centric
model. The station-centric model predicts demand for each
station individually. For instance, Froehlich et al. [23] used
four basic prediction models to predict available bikes in
each station: last value, historical mean, historical trend and
Bayesian network. Kaltenbrunner et al. [24], Borgnat et
al. [25] and Vogel et al. [14] distinguished typical usage
patterns and predicted the hourly user demand in the bike-
sharing systems of Barcelona, Lyon and Veinna, respectively,
by using time series analysis method. However, these methods
show their limitation on prediction performance, especially
when predicting the traffic under unusual situations. For
cluster-centric model, it usually partitions the stations into
clusters and predicts the totoal demand of each cluster [26, 27].
For example, Yexin Li et al. [26] proposed a hierarchical
prediction model, which contains a bipartite clustering algo-
rithm, a multi-similarity-based inference model, and a check-
in inference algorithm, to predict the number of bikes that
will be rent from/returned to each cluster, but the geographical
granularity of this method is too sparse for trip advisor design.

Based on insights into usage demand analysis, the allocation
of resources, bikes and empty places, has to be managed
by the operator. To balance the stock level, methodologies
in [28–31] tackled the problem of finding truck routes and
decided the number of bikes to move between stations that
minimizes the distance traveled by trucks. Raviv et al. [28]
presented two mixed integer linear program formulations to
solve the static repositioning problem which assumes that the
repositioning is during the night when the usage rate of the
system is negligible. Authors in [30] introduced a dynamic
public bike-sharing balancing problem when the status of the
system is rapidly changing. Redistribution can also be done
by users through a crowdsourcing mechanism that incentivizes
the users in the bike repositioning process [15, 16]. Similar
method has been applied into vehicle sharing systems in [32].
Both dynamic vehicle redistribution and online price incentives
were considered in [33]. Different form the above methods, we
establish a framework aiming at balancing the usage of bikes
instead of the stock level of stations.

VII. CONCLUSION

In this paper, we propose a novel architecture of a
utilization-aware trip advisor which engages users to balance
bike usage and prolong the maintenance intervals of bikes.
Starting from ensuring users’ success rate of rental and return,
the advisor is designed to dynamically recommend the optimal
stations based on their current activeness of bike usage. We
evaluated the proposed system through extensive simulations
using historical records from the world’s largest bike-sharing
system, confirming the effectiveness of our framework.
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