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Abstract—Increasing number of instances of privacy leakage
in Cyber-Physical Systems (CPS) and the corresponding serious
consequences have arisen great worries in our society. In most
privacy preserving mechanisms proposed to protect the sensitive
individual information, system performances are compromised
at the same time. In this article, we consider the trade-off
between individual privacy and system performance in CPS.
After introducing the CPS architecture and the basic definition of
differential privacy, we formulate the performance optimization
problem subject to a given differential privacy requirement. For
a simplified system, we derive the close-form optimal system
performance under desired privacy requirement. Simulation
results are provided to verify the proposed mechanism, which
balances tradeoff between system performance and privacy. We
also identify the future research topics on privacy preserving
problem in CPS.

I. INTRODUCTION

Cyber-physical systems (CPS), as the next generation of
engineered systems, deeply integrate modern computing, com-
munication, and control technologies to dramatically improve
the efficiency, stability, reliability, safety and other perfor-
mances in operating real systems [1], [2]. CPS has attract-
ed much attentions by academic researchers, industrial and
technical staff, government decision-makers due to growing
number of applications in national economy and critical infras-
tructure, such as industrial control, smart grid, and intelligent
transportation. In particular, national defense has been highly
dependent on the development of CPS, since the defense
systems, including unmanned aerial vehicles, Naval Vessels,
and unmanned ground vehicles, all belong to cyber-physical
systems in essence [3].

Though CPS can clearly yield enormous benefits for us,
it is also vulnerable to an increasing number of malicious
attacks due to the employment of communication networks
and heterogeneous IT elements. Thus, security and privacy
are becoming critical issues in the field of CPS theoretical
research and technical implementation, and many literatures
have studied these issues from different points of view [1],
[2]. An important issue of security in CPS is confidentiality,
which refers to the ability of protecting the database from
unauthorized users. However, different from confidentiality
related to data, privacy is about people and refers to the
personal sensitive information [1]. An example is that attackers
can use None-Intrusive Load Monitoring (NILM) techniques
from smart meters to obtain the resident’s private information,
such as living habit, and then break into people’s home when
the house is vacant [4].

Encryption, a traditional privacy protection technique, is
widely used to prevent the data from unauthorized users
and adversaries [5]. However in CPS, this technique can be
hardly applied due to the limitation of sensors’ computing
capacity. In addition, brute-force attack can be used by the
adversary against any encrypted data [6]. Therefore, a critical
issue is how to preserve the privacy when the adversaries
can access to the data and the encryption techniques are
invalid. Differential privacy is recently proposed by Dwork as
an effective privacy protection approach which prevent data
recovery by adversaries [7]. Essentially, it is a perturbation
technique that conceals the original data with proper noises.
Due to its significant advantages including easy realization
and mathematical theoretical basis, differential privacy has
been widely applied to preserve individual privacy in CPS.
Furthermore, individual can sell his private information to
corporations and get rewards when the privacy level of his
information is measured by differential privacy [8].

However, most existing privacy preserving works put em-
phasis on the design of privacy preserving approaches, which
on the other hand, neglect the optimization of system per-
formance at the same time. In fact, CPS is a feedback
close-loop system with dynamic evolution of states. Thus,
the optimization of system control performances should be
considered. For example, Linear Quadratic Gaussian controller
(LQG) is used to keep the level of energy storage and
reduces the the power flow in microgrid network system [9],
and H∞ controller is synthesized to achieve stabilization
with guaranteed performance in F18/HARV fighter aircraft
system [10]. Therefore, a new challenging issue is how to
balance the privacy requirements and system performance
in CPS. Specifically, in this article we optimize the system
performance with a given privacy-preserving requirement.We
describe the privacy-preserving requirement by the parameters
ϵ and δ in differential privacy, and then formulate an optimal
controller design problem with guaranteed privacy-preserving
requirement. In a special case study, we obtain the optimal
controller which minimizes the LQG cost function.

The contribution of this article is threefold. First, to our best
knowledge, this is the first work to propose an optimization
problem which jointly considers the controller design and
privacy preserving in CPS. Second, we derive the explicit
expression of optimal LQG controller for the system under
guaranteed privacy requirement. Third, we bring both theoret-
ical analysis and simulations to demonstrate how to balance
the tradeoff between control performance and privacy.



2

II. DIFFERENTIAL PRIVATE CONTROLLER DESIGN

A. System architecture

Cárdenas et al. [1] pointed out that a typical CPS (see Fig. 1)
is composed of

• plants, the physical systems;
• sensors, to observe the plants and get the information;
• controllers, to make decisions and issue control com-

mands;
• actuators, to implement the control commands;
• networks, the communication medium through which

the plants, sensors, controllers and actuators exchange
information with each other.

These entities are tightly working together to improve the sys-
tem performance with advanced computing, communication
and control technologies.

Fig. 1. Typical architecture of cyber-physical systems

From the systematic viewpoint, physical plants and other
entities interact with each other in CPS, and essentially formed
a feedback loop. We denote xk as the state vector of physical
plants at time k. The sensor Si observes the state and sends
the observations yi,k to the controllers. After receiving the
observations, the controller Cj computes the state estimate
x̂j,k, and then sends the control command uj,k = fu(x̂j,k)
to the actuators, where fu is the designed control law. Then
actuators implement these control commands at time k. Note
that the controllers are designed to optimize the performance
J = J(u). For example, optimal control of instantaneous
power flows is designed to keep the energy level of each local
storage close to the ideal level, and reduce the power flow
among the grids simultaneously [9]. This objective can be
formulated as a LQG function, which is an important system
performance in smart grid.

B. Differential privacy in CPS

In CPS, the adversaries can eavesdrop the sensor-to-
controller communication channels and controller-to-actuator
communication channels in networks, and then exploit the
collected data to infer the state of system and deduce some
sensitive personal information [1]. In order to preserve the
privacy of CPS, we leverage differential privacy approach to
protect the observation data sending from sensors to controllers
and the command data sending from controllers to actuators.

In [11], (ϵ, δ)-differential privacy is defined by probability
inequality. From this definition, the original information is
randomly mapped to a subset of the output range, and the
adversary cannot infer the original information from the output
dataset. The parameters ϵ, δ determines the privacy level. More
privacy will be achieved when the parameters are closer to 0.
We also can see that this new privacy preserving approach
is independent of the acquired background knowledge by
the adversaries. It means that this method does not need to
update when the new type attack appears. Another advantage
of differential privacy is the solid mathematical definition
which provides a rigorous and self-contained theory basis and
quantitative evaluation method for privacy.

In practical, several mechanisms have been proposed to
realize the privacy preserving for numeric data, e.g., Gaussian
mechanism, Laplace mechanism [7]. For the Gaussian mecha-
nism, independent and identically distributed (i.i.d.) Gaussian
noises with zero-mean are added to the measurements to
achieve (ϵ, δ)-differential privacy. In this article, we make use
of this type mechanism to protect the privacy in CPS.

According to the differential privacy approach, we preserve
the privacy by adding noises yak ∈ Rn and ua

k ∈ Rm to
the sensor’s transmitting data yk = (y1,k, y2,k, . . . , yn,k)

′ and
the control data uk = (u1,k, u2,k, . . . , um,k)

′ in each time k
respectively. Thus, the sensor transmitting data and control
data will become ỹk = yk + yak , and ũk = uk + ua

k.
In fact, differential privacy can guarantee the accuracy of

statistical information without revealing individual privacy. An
example is the privacy preservation in smart grid. If we are
interested in the average of power consumption in a period,
we can see that the average value without privacy protect and
that with differential privacy are very close in the sense of
mathematical expectation. Meanwhile, the adversary cannot
know the accurate power consumption in any individual time
when the system has differential privacy mechanism. Thus the
adversary cannot easily infer the personal habits from the data,
which is obtained from eavesdropping the communication net-
work. The variance of added noise is the indicator of average
deviation between the measurement without privacy protect
and that with privacy preserving. Note that this deviation is
determined by differential privacy parameters ϵ, δ. The larger
artificial noises are added to the data before transmission,
the better privacy is preserved. Meanwhile, the system per-
formance will become worse. Thus, a crucial problem is how
to balance the privacy requirement and system performance
requirement. This motivates us to study the following problem.

C. Optimization problem

From the viewpoint of system, our objective is to optimize
the performance of CPS, i.e., J = J(u), by designing control
law fu and preserving the privacy by designing stochastic
mapping M simultaneously. Specifically, we aim to minimize
the performance J under privacy requirements ϵ = ϵ0, and
δ = δ0 for the control data sequence u1, u2, . . ., and mea-
surement sequence y1, y2, . . ., under given adjacency operation
Adj. Then this optimization problem can be formulated as
follows:
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Problem 1

J∗ = min(or max)J(u, ua, ya)

s.t. ϵ = ϵ0, δ = δ0.

When the system works with optimal control strategy u∗ =
(u∗

1, u
∗
2, . . . , u

∗
k, . . .) and optimal differential privacy variables

ua∗ = (ua∗
1 , ua∗

2 , . . . , ua∗
k , . . .), ya∗ = (ya∗1 , ya∗2 , . . . , ya∗k , . . .),

its performance can reach the minimum or maximum. D-
ifferent from classical optimal control problem, this new
problem can not only optimize the system performance, but
also preserve the individual privacy.

Note that individual privacy requirement constraint ϵ0, δ0
can be determined by his expected rewards from privacy
selling [8]. For example, if his expected rewards reward(ε, δ)
are more than a given value r0, i.e., reward(ε, δ) ≥ r0, we
can obtain the optimal privacy requirement ϵ0, δ0 from this
inequality of reward requirement.

III. A CASE STUDY: LQG CONTROL

LQG control has a wide range of applications in CPS, such
as smart grid [9], marine [12], etc. It focuses on linear system
model with additive white Gaussian noise, and aims to opti-
mally control the system subject to quadratic costs. We have
pointed out that the adversary can infer the user’s individual
habits with the accurate data from sensors in smart grid. When
the system exploits differential privacy to preserve the privacy,
it can add some noises to the data, and then the adversary
cannot infer the information of individual habits easily. The
parameters ε, δ in differential privacy can be deem as the
indicator of the privacy preserving level. Thus, the problem
becomes how to optimize the quadratic costs when the privacy
preserving level is given. Thus, we consider optimal LQG
controller design with privacy requirement constraint in this
section.

Modeling the dynamics of CPS is a challenging work
since it involves the complex interactions between control,
communication and computing entities. From the viewpoint
of networked control society, a basic characteristic of CPS is
that the communication network mediates between control and
physical entities [1]. Thus, the dynamics of physical entities
can be modelled as general difference equations with state
variables, control variables, and the noises. For example, the
linear difference equations have been exploited to depict the
state dynamics of smart grid on the amount of generated
power, the amount of consumed power, the time integral of
the difference in power supply and power demand, and the
price of a unit of power in [13]. In this section, we consider
a specific linear CPS, e.g., a smart grid system [13], in which
the system evolves as follows:

xk+1 = Axk + uk + wk,
yk = Cxk + vk,

(1)

where wk, k = 1, 2, . . . , are i.i.d. zero mean Gaussian process
noises with covariance σ2

w, and vk, k = 1, 2, . . . , are i.i.d.
zero mean Gaussian measurement noises with covariance σ2

v ,
respectively. For brevity, we assume that there is one sensor,
one controller, and one actuator in this system.

A. Parameters design of Gaussian mechanism

Gaussian noises are added to measurements yk, k =
1, 2, . . . , and control variables uk, k = 1, 2, . . . , in order to
prevent the adversary inferring private information from these
data. Then the system dynamics becomes

xk+1 = Axk + uk + ua
k + wk,

yk = Cxk + vk + yak ,
(2)

where ua
k, k = 1, 2 . . . , and yak , k = 1, 2 . . . , are i.i.d. zero

mean Gaussian random variables with covariance σ2
u, σ2

y ,
respectively. Note that the process noises and measurement
noises are all Gaussian. When artificial Gaussian noises are
added to protect the privacy, new process noise, i.e., ua

k +wk,
and new measurement noise, i.e., vk + yak , are still Gaussian.
Then the well-known Kalman filtering method can be exploit-
ed to filter the noises when the estimator computes the system
state. However, if artificial Gaussian noises are replaced by
other types of noises, e.g., Laplace noises, this method is
not available and more complex filtering method needs to be
designed. Thus, for the brevity, we utilize Gaussian mechanism
to preserve the privacy in this article.

We assume that the data privacy requirements are given as
ϵ = ϵ0, δ = δ0. From [7], we have

σu ≥ σu0 =
d

2ϵ0
(K +

√
K2 + 2ϵ0), (3)

σy ≥ σy0 =
d

2ϵ0
(K +

√
K2 + 2ϵ0), (4)

where K =
(

1√
2π

∫ +∞
δ0

e−
t2

2 dt
)−1, and the constant d is

from the adjacency operation Adj(z(1), z(2)). Then the privacy
requirements can be achieved with (3) and (4). Note that d
indicates the sensitivity of the data since z(1), z(2) will be
treated as equivalent if |z(1) − z(2)| ≤ d.

In fact, (3) and (4) can guarantee that the individual privacy
information cannot be inferred by the adversaries in CPS. For
example, the adversaries can hardly obtain the accurate system
state in smart grid, and then the individual private information,
e.g., personal habits, is almost impossible to be obtained by
the adversaries.

It is obvious that the differential privacy affects the design
of controller. The natural question is, how to design the
optimal LQG controller when the transmission data is under
differential privacy protect with the given privacy requirement.
We will give the answer below.

B. Optimal LQG controller design with given privacy require-
ment

We aim to minimize the following Linear Quadratic Gaus-
sian (LQG) control cost

J = lim
T→∞

1

T

T∑
k=1

E[x2
k + λũ2

k]

when the transmission data are under given privacy require-
ment. Note that this cost function can be seen as the trade-off
between regulation performance and control cost, and λ is the
weight between them.
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We have designed the Gaussian mechanism on yk and uk

respectively. The remaining work is to design the optimal LQG
controller with given Gaussian mechanism.

Similar to [14], we exploit dynamic programming method,
and then obtain the optimal linear static controller uk =
Lx̂k = −SA(S + λ)−1x̂k, where L is the feedback control
gain, S = 1

2 (−λ+ λA2 + 1 +
√
∆) is the solution of Riccati

difference equation Sk = A2S2
k+1[1− (Sk+1 + λ)−1] + 1 and

∆ = (λ − λA2 − 1)2 + 4λ, and x̂k can be obtained from
Kalman filtering [14].

If we only focus on the privacy in sensor side or controller
side, Gaussian noises can be injected to the sensor measure-
ments or control commands alone. It means that σu = 0 or
σy = 0 in our solution. Hence, our solution can also handle
the case when only one side privacy is considered. Note that
the above result is on the scaler linear system, and can be
easily generalized to multi-variable case. In some practical
systems, there may be multiple state variables and control
commands. We can add multi-dimension zero mean Gaussian
noise vectors to the sensor measurements and the control
commands, respectively. Similarly, the optimal solution can
be obtained for the multi-variable case.

C. Simulation and system performance analysis

In order to investigate how much the designed privacy mech-
anism influences the system performance, consider a linear
system with parameters in Table I. In accordance with Section
III, we add Gaussian noises to the sensor measurements and
control data, respectively.

Parameters Setting
system parameters A = 2, C = 1.5

system noise covariance σw = 1
measurement noise covariance σv = 1

weight λ = 0.5
initial system state x0 = 0

TABLE I
SYSTEM PARAMETERS FOR SIMULATION.

To achieve the goal of system privacy preserving level with
given differential private parameters ϵ = 0.1, δ = 0.5, it can be
calculated that the adding measurement noises and control data
noise can both be distributed with σu ≥ 4.2593, σy ≥ 4.2593.
Since the system performance J is composed of two parts,
i.e., system states and control data, we show the variation of
the system state and control data in Fig. 2 under Gaussian
mechanism with σu = 4.2593, σy = 4.2593. Due to the
influence of artificial interference, the fluctuations of state
estimation and control data under privacy preserving are all
larger than those without Gaussian mechanism.

From Section III-B, one can see that the optimal controller
is composed of control gain L and state estimate x̂k. Thus the
state estimation quality will impact the system performance J .
State estimation quality is often measured by state estimation
errors, the difference between state estimates and correspond-
ing real states. Fig. 3 shows the variation of state estimation
errors with given privacy requirements. It can be seen that a
higher value of privacy parameters ϵ, δ will lead to a smaller
estimate error.
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(a) State estimate evolution with Gaussian mechanism versus those without
Gaussian mechanism.
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(b) Control data with Gaussian mechanism versus those without Gaussian
mechanism.

Fig. 2. Illustrate the effectiveness of differential privacy on the state
estimation and control data.

Fig. 3. State estimation errors under different privacy preserving require-
ments.

We analyze the effectiveness of differential privacy on the
system performance J and the variations of J with parameters
δ, ϵ are shown in Fig. 4. When the Gaussian noises are added to
measurements and control data, jointly consider the influence
of parameters δ, ϵ on the system performance J , we can
see the variations of J from Fig 4(a). Fig 4(b) shows the
variation of J when the Gaussian noises are only added to
measurements. From Fig. 4, one can conclude that the larger
privacy requirement, the greater cost J .

IV. FUTURE PROSPECTIVE WORK

To our best knowledge, this is the first work to balance
the tradeoff between the system performance and privacy
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(a) The system performance J with Gaussian mechanisms at both sensor side
and controller side.

(b) The system performance J with Gaussian mechanism at sensor side.

Fig. 4. Illustrate the effectiveness of differential privacy on the system
performance J .

requirement in CPS. This article opens a door to a new
research field, i.e., the privacy and performance trade-off in
CPS. Here we identify three major challenges in this field in
the future research:

First, investigate the privacy preserving problem on more
general system models, e.g., the networked control system
with multiple variables and multiple controllers, nonlinear
system model and so on. We only study the problem on
a simple system in this article, and it is more challenging
to balance the privacy requirement and system performance
on complex CPS system. The reason is that a complex CPS
system may be dynamic space-time coupling. Then privacy
preserving mechanism and system performance cannot be
optimized separately, and new joint optimization methods are
needed.

Second, design more efficient privacy preserving mechanis-
m, e.g., to modify the existing differential privacy mechanism
or propose a new mechanism in order to decrease the system
cost as much as possible. If we add too much noises to the
measurement data or control data which are not including
individual privacy, the system may have to pay additional
cost. Thus, we should further refine the privacy requirements,
and design a more efficient privacy preserving mechanism to
reduce the system cost.

Third, jointly exploit feedback control technology and d-
ifferential privacy mechanism to investigate new challenging
issues of privacy in specific CPS systems, e.g., smart grid,

social network systems. For example, users need to protect the
identity information, electricity consumption data, and other
private information in smart grid. These different types of
privacy need to be protected simultaneously with differential
privacy. A challenging problem is how to balance the control
performance and multiple privacy preserving requirements.

V. CONCLUSION

In this article, we investigate the optimal privacy-preserving
controller design for CPS. We introduce the system architec-
ture and the definition of differential privacy in CPS, and then
we formulate an optimization problem in which system cost is
optimized subject to privacy requirement. For linear system,
we design optimal control law to minimize the LQG cost under
the given privacy requirement and obtain the corresponding
cost. A simulation example is presented to show the system
state evolutions, estimation errors and system costs under
differential privacy protection.
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