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Abstract—Anomalies of the omnipresent earth magnetic (i.e.,
geomagnetic) field in an indoor environment, caused by local
disturbances due to construction materials, give rise to noisy
direction sensing that hinders any dead reckoning system. In this
paper, we turn this unpalatable phenomenon into a favorable
one. We present Magicol, an indoor localization and tracking
system that embraces the local disturbances of the geomagnetic
field. We tackle the low discernibility of the magnetic field by
vectorizing consecutive magnetic signals on a per-step basis, and
use vectors to shape the particle distribution in the estimation
process. Magicol can also incorporate WiFi signals to achieve
much improved positioning accuracy for indoor environments
with WiFi infrastructure. We perform an in-depth study on the
fusion of magnetic and WiFi signals. We design a two-pass,
bidirectional particle filtering process for maximum accuracy, and
propose an on-demand WiFi scan strategy for energy savings.
We further propose a compliant-walking method for location
database construction that drastically simplifies the site survey
effort. We conduct extensive experiments at representative indoor
environments, including an office building, an underground park-
ing garage, and a supermarket in which Magicol achieved a 90
percentile localization accuracy of 5m, 1m, and 8m, respectively,
using the magnetic field alone. The fusion with WiFi leads to 90
percentile accuracy of 3.5m for localization and 0.9m for tracking
in the office environment. When using only the magnetism,
Magicol consumes 9× less energy in tracking compared to WiFi-
based tracking.

Index Terms—Indoor localization, map construction, magnetic
field, opportunistic WiFi

I. INTRODUCTION

ACCURATE and pervasive indoor positioning can signifi-
cantly improve our everyday life. Examples include local

searching for position of interest (POIs) in a shopping mall,
navigating to a meeting room in an unfamiliar office building,
and finding a car in a parking garage. WiFi [1–4], cellular [5–
7], or even FM [8, 9] based approaches have shown great
promise but may not be as effective when the signals are
weak or not available, as is the case in an underground parking
garage. The WiFi scans are also known to be energy expensive.
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The (geo-)magnetic field is omnipresent, and thus can
potentially be leveraged for a pervasive positioning technol-
ogy for an indoor environment without any dependency on
infrastructure. There are several ways to exploit the geo-
magnetism for localization purposes. One is to obtain the
walking direction from the magnetic field, typically used in
an inertial sensor based tracking (i.e., dead reckoning) system
[10–12]. However, the direction sensing inside a building is
extremely noisy due to the geomagnetic field anomalies caused
by the local disturbances of ferromagnetic building materials
[13, 14]. Another way, in contrast, is to exploit the magnetic
field anomalies as distinctive signatures. But these systems
either require customized hardware [15] or work under specific
scenarios [16, 17]. The magnetic field anomalies are also used
to discriminate indoor and outdoor environment in [18], and
as indoor landmarks in [12].

In this paper, we present the design and evaluation of
Magicol – a magnetic field based indoor localization and
tracking system for smartphone users. Recognizing that the
indoor geomagnetic field anomalies are omnipresent, location
specific and temporally stable, Magicol leverages the locally
disturbed magnetic signals as location-specific signatures. It
uses the magnetometer commonly found on smartphones, with-
out resorting to special hardware. Through magnetic sensing
that consumes very little energy, Magicol is energy efficient
and applicable to almost every indoor venue.

To make Magicol a reality, we must address three major
challenges. First, the magnetic signal has a very limited
discernibility. A single observation cannot be reliably used
as a unique location signature. In Magicol, we leverage user
motion to vectorize multiple observations to form a higher
dimensional signature. This vector is then matched against
a pre-established magnetic signal map (M-Map), a location
database built offline with mappings between magnetic signals
and their locations, to localize the user. A user may walk
arbitrarily, in different directions and with different strides, and
may stop from time to time. To ensure tractable complexity,
the vectorization is performed on a per-step basis, and the
matching process is realized through an augmented particle
filter (APF) in which the similarity between the signal vector
and that in the M-Map is used to weigh particles. We design
a novel map-constrained, position-aware, and inertial-based
(MPI) particle motion model to avoid using absolute (indoor)
heading directions that are known to be noisy. We further use
dynamic time warping in APF to address practical issues such
as variations in spatial sampling density, devices, and usage
patterns.



Secondly, while Magicol works without dependency on a
WiFi infrastructure, but it can work even better in dense
WiFi AP deployment environments, an issue that has not been
exploited. We show the WiFi and magnetic signals are indeed
complementary: WiFi signals are distinctive across distant lo-
cations whereas magnetic field are more locally discriminative.
We then explore a few intuitive ways of magnetic-WiFi fusion,
which uses a rough WiFi localization estimate to confine initial
particle distribution and also considers the WiFi fingerprint
similarity in the course of APF. In particular, we design a
two-pass, bidirectional particle filtering method to fuse the
WiFi and magnetic localization. Given a WiFi scan result
and a background logged motion trace with unknown starting
position, the first pass aims to obtain a good estimate of the
starting position via backward particle filtering on the reversed
motion trace with particles initially distributed around the
WiFi-based location estimate. The resultant starting position
is in return used to ensure better initialization of the forward
particle filtering process in the second pass.

Thirdly, as in radio based localization systems, the location
database (i.e., M-Map in Magicol) needs to be constructed in
advance. This is a non-trivial problem and has been actively
studied recently [19, 20]. In addition, the low discernibility
of the magnetic field entails a densely collected database. We
propose a compliant-walk (CW) based site survey solution.
A surveyor only needs to walk normally along pre-planned
survey paths. The phone collects inertial sensor readings and
magnetic signals automatically during the walk. The system
estimates the actual walking traces from the sensor data,
and matches the data against the paths through dynamic
programming. This fixes the positions of the steps, from which
positions of magnetic signals are interpolated. With CW, the
survey task is significantly simplified for an ordinary phone
user. This method is also applicable to other localization means
such as WiFi-based fingerprinting.

In summary, the contributions of Magicol are threefold:
• We perform an in-depth study of the indoor magnetic

field properties and propose effective techniques to ex-
ploit the anomalies of the magentic field for localization
and handle several practical challenges.

• We propose a novel two-pass bidirectional particle filter-
ing process to fuse magnetic and WiFi signals for more
accurate indoor positioning and tracking.

• We devise a compliant-walk based location database
construction method which significantly lowers the bar
for ordinary smartphone users to conduct site surveys.

We have carried out extensive experiments to evaluate the
performance of Magicol under three representative indoor envi-
ronments, an office floor, an underground parking garage, and a
supermarket. Magicol achieves high positioning accuracy: a 90
percentile localization accuracy of 5m, 1m, and 8m in the three
environments, using magnetic field alone. We note the WiFi AP
deployment is very sparse in the underground parking garage
and supermarket. Therefore, we study the localization accuracy
for magnetic and WiFi fusion in the office building only.
The results confirm that, using magnetic field alone, Magicol
achieves comparable accuracy with WiFi-based approaches
(i.e., EZ [3] and Radar [1]), and that the fusion with WiFi

leads to a 90 percentile accuracy of 3.5m for localization and
0.9m for tracking. We profiled the energy consumption for
Magicol clients. Magicol is 9× more energy efficient when
tracking with magnetism than a pure WiFi-based solution.

II. INSIGHT ON GEOMAGNETISM

In this section, we provide some measurement study on the
properties of the indoor magnetic field, some are favorable for
indoor localization purpose, whereas others bring challenges
to actual exploration.

A. Favorable Geomagnetic Field Properties

Locally Disturbed yet Stable Magnetic Field: Indoor mag-
netic fields have been found to exhibit certain anomalies due to
the disturbances caused by building construction materials and
electrical appliances. The patterns of disturbance are different
across different locations. In addition, the magnetic field,
including the local disturbances, is very stable over time as
long as the internal layout remains unchanged. Figure 1 clearly
demonstrates these properties, where the magnetic signals
were collected during walks along a straight corridor in an
office building at different times of day, and on two different
dates that were two months apart. The local disturbance and
the stability over time make the magnetic field a potential
candidate for localization purpose. We note that it has been
reported and preliminary explored in many previous work
(e.g., [13, 13–15, 17, 18, 21–24]), we include them here for
completeness.
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Figure 1. Stable and locally disturbed indoor geomagnetic field. Measurement
was on a straight corridor, at different time of day and different days.

Limited Impact of Mobile Objects: Indoor environments
are usually highly dynamic, due to mobile objects such as
people, cars, elevators, and on/offs of electrical appliances. We
studied the impact they have on the magnetic field in typical
scenarios. The results are shown in Figure 2. Figure 2(a) shows
the impact of cars, with data having been collected along the
red line that was about 1 meter away from the car. We collected
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Figure 2. Measurement of the impact of mobile objects on the megnetic field.

data twice: at 4PM when the garage was full of cars, and at
12AM when the garage was almost empty. We can see that
cars have little impact on the magnetic field that is 1 meter
away. We also measured the influences of people and grocery
carts in a supermarket. As can be seen in Figure 2(b), there
was no visible impact from trolleys and people walking by. On
the contrary, the fluctuation of magnetic measurement is much
larger and obvious during user walking. We also collected
magnetic signals in an elevator lobby with 12 running elevators
at a 1-meter distance from the elevator doors. In Figure 2(c),
comparing with drastic fluctuations of magnetic values during
walking, running elevators do not bring serious impacts when
the user is standing still. That means the elevator infrastructure
had a more significant impact on the magnetic field whereas the
moving cabin had little impact. In summary, our experiments
confirm that the impact of mobile objects is very limited, and
have barely no impact at a distance of one meter away.

B. Challenges in Using The Magnetic Field

Low Discernibility of Magnetic Signals: The strength of
(geo-)magnetic field is usually very weak, commonly within
a few tens of uT. Hence, single magnetic signal offers very
limited discernibility. Taking the iPhone 4 trace shown in
Figure 3(a) as an example. If we randomly pick one magnitude,
say 48, we will find many locations with magnitude 48 in the
rather short trace.

The magnetic field is directional, and a magnetometer
measures 3-D magnetic signals. It is natural to think of using
the 3-D signal to increase the discernibility. However, it is
hard to do so in practice because the frame of reference
of the magentometer may not always align with the global
coordinate system. To ensure the alignment, it would require
either to accurately track the device attitude all the time or to
constrain the device usage to some fixed attitude (e.g., hand-
held horizontally with Y-axis towards heading direction). The
former is difficult due to sensor drift and the latter severely
affects user experiences. Therefore, only the magnitude of the
magnetic signal may be used in practice.
Device Diversity and Usage Diversity: We found that for
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Figure 3. Magnetic field measurement results with (a) different mobile
phones, and (b) different attitudes for the same phone.
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Figure 4. Statistical results of the deviation of magnetic field measurement

the same magnetic field, different devices will show differ-
ent readings. This is clearly demonstrated in Figure 3 and
Figure 4. Figure 3(a) shows the magnitude of the collected
magnetic signals along exactly the same path using different
smartphones. For the same device, if the data was collected
at different device attitudes, then the resulting signals vary.
This is confirmed in Figure 3(b), where the data was collected
with different attitudes along the same path. Note that during
the experiments, we stood still for 10 seconds before walking
to discriminate sensor noise and magnetic field variation.
Such diversity in terms of devices and usage further impair
discernibility.

Statistical results of the deviation of magnetic field mea-



surement are shown in Figure 4. In Figure 4 we can see
that compared with temporal influence, deviations of magnetic
measurement among different devices and attitudes are larger.
However, deviation values are relatively stable with different
trace lengths, and variances of deviation are small that result
in steep slopes of all three CDF curves.

As a brief summary, the magnetic field has favorable in-
trinsic properties (i.e., stability and local disturbance) to serve
as a localization modality. However the low discernibility of
magnetic signals make it rather challenging to explore the
magnetic signal directly, e.g., using fingerprinting techniques.1
The device and usage diversities further pollute the sensed
magnetic strength.

III. MAGICOL OVERVIEW

The insights into indoor geomagnetism indicate both op-
portunities and challenges when utilizing a magnetic field
for localization purposes. On one hand, features such as the
ubiquitousness, the location-specific, temporally stable and
undisturbed anomalies clearly reveal the potential of using
magnetic signals as location signatures. On the other hand,
the low discernibility, device and usage diversity impose real
challenges that we need to overcome.

In this section, we provide an overview of Magicol – an
indoor localization system for mobile phone users that exploits
the globally available geomagnetic field. Magicol consists of
a mobile client and a backend Cloud service. The mobile
client has two operating modes: online and offline. The overall
architecture of Magicol is depicted in Figure 5.
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Figure 5. Magicol architecture

Mobile Client: The Magicol client performs background data
logging (to facilitate immediate localization) of IMU sensor
data and, opportunistically, the WiFi sensing results. To save
memory and communication costs, it performs motion state
detection and keeps a window of the most recent walking
information (e.g., step length, turning angle of the step) and
the corresponding magnetic signals. Walking state detection
is well studied and we employ the step detection techniques
and personalized step model developed by Li et al. [25]. The
mobile client may operate in online mode if network access is
available. In this mode, the background logged data is sent

1We note that fingerprinting technique was successfully applied in [15],
where a customized device with a plural of sensors was used. As only one
device is used with attitudes kept the same in experiments, the diversities was
not recognized nor handled.

to the Cloud service to obtain a location fix; it may also
operate in offline mode when there is no network access and
the location database is downloaded beforehand. In this mode,
the location is resolved locally on the device using a local
location inference engine.

Cloud Service: Cloud service consists of two subsystems:
location database construction and a location inference engine.
The location database consists of the magnetic fingerprint map
(M-Map) that contains <position, magnetic field strength>
tuples and the radio map which stores the WiFi informa-
tion. The M-Map construction subsystem solves the location
database construction problem through a simple yet efficient
compliant-walking-based (CW) site surveying method (Section
VI). The subsystem further consists of three modules: survey
plan creation, user trace estimation, and trace matching.

The location inference engine receives and resolves location
queries from mobile clients. As a common module for both the
mobile client (in offline mode) and the backend Cloud service,
it resolves a user’s location by matching the magnetic signals
against the M-Map. The location resolution process is achieved
through an augmented particle filter that operates on a per-
step basis (Section IV). Depending on the availability of other
opportunistically sensed signals (e.g., WiFi), it may leverage
and fuse them with the magnetic field-based localization
process (Section V).

IV. TRACKING WITH MAGNETIC FIELD

In this section, we present the tracking engine that resolves
user’s location through observed magnetic signals and the IMU
data using particle filtering. In addition to aforementioned
low discernibility of the magnetic signal, device and usage
diversities, it further faces challenges caused by different
spatial sampling density due to different walking speed or
sensor sampling rate. We elaborate concrete techniques that
overcome all these challenges.

A. Step-based Vectorization
To improve the discernibility of (geo-)magnetic signals,

one common method is to increase the spatial coverage of
measurements. Unlike [15] where the authors obtained a 12-D
vector magnetic signal using a special customized hardware,
which implies not applicable to mobile phones, we propose
to vectorize multiple temporal observations into a high dimen-
sional vector signal. This vector signal has increased spatial
coverage due to the fact that the user is walking. Let’s again
take Figure 3(a) as an example. Now suppose the device
observes three consecutive samples with magnitude {47, 48,
49}. There are only two possible locations (highlighted with
red circles) with similar observations. The discernibility is
indeed improved. Obviously, the longer the trace we vectorize,
the more discriminative the resulting vector signal will be.

We incorporate the step model and vectorize all the samples
within the same step as a vector for three reasons. First, when
performing a vector comparison, it makes sense only when
both vectors cover a similar spatial distance. Thus, we need to
have an estimate of the spatial coverage of the step vector. Such



information is readily available from IMU-based tracking.
Second, all the samples within the same step always have the
same motion direction. This is the fundamental reason that we
can combine them into one vector. Third, using step model
naturally handles the discontinuity in the walking process.

B. Magnetic Vector Matching with DTW
The magnetic field is sampled continuously while walking.

Due to possibly different walking speeds and different sam-
pling rates, different number of samples may result for the
same spatial coverage. We refer to this as spatial sampling
density variation issue. Figure 6 demonstrates this problem. In
our experiments, we walked along the same path at different
speeds while sampling the magnetometer at a fixed frequency.
We found that fast walking led to shorter traces and fewer
samples, whereas slow walking yielded long traces and more
samples. This translates to different spatial sampling density
because the walks covered the same path. Different temporal
sampling frequencies will further complicate the phenomenon.
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Figure 6. Traces for the same path at different walking speeds.

The spatial sampling density variation makes it difficult
to directly compare two vectors that cover the same spatial
range, as they are likely to have different dimensionalities.
However, a closer look at Figure 6 reveals that, despite the
different spatial sampling densities, their shapes look similar.
Therefore, in Magicol, we adopt dynamic time warping (DTW)
to compare two vectors. DTW is a proven effective algorithm
for measuring similarity between two sequences that may vary
in time or speed.
Handling the Diversities: We further handle the device
diversity and usage diversity issues, identified in Section II,
with a simple mean removal technique: both the signal vector
and the candidate vector have their mean removed before
applying DTW. The rationale is that, despite the diversities
in measured magnetic strengths, the shape of the resulting
magnetic signal sequences are all similar for the same path, as
confirmed in both Figure 3 and Figure 6. Therefore, we can
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Figure 7. Headings from compass, gyroscope and fusion (motion API), for
an indoor straight walking. Gyro gives relative direction changes and is offset
from 0 to around 4 radian (the corridor direction) for easier view.

rely on the shape of the local magnetic field instead of their
absolute values.

In brief, to match a magnetic signal vector collected in one
step, we compose a mean-removed candidate vector in the
database. The candidate vector consists of a set of successive
geomagnetic samples spread over the travelling path of each
particle. These samples cover the same spatial distance of that
step. We then remove the means of both the measurement
vector and the candidate vector, and apply DTW to calculate
their similarity.

C. Particle Motion Model

Particle filtering is commonly adopted in tracking appli-
cations. In these work, particles are uniformly driven by
externally sensed absolute heading directions, which is often
the fusion result from compass and gyroscope. However, due
to the magnetic field anomalies, the heading direction, even
after fusion, is still very noisy, as evidenced in Figure 7.

Magicol also adopts particle filtering. Unlike existing track-
ing systems that fuse the magnetometer and the gyroscope to
obtain a compromised result, Magicol makes separate use of
them to best exploit the strength of each sensor modality: the
gyroscope can reliably tell relative walking direction; magnetic
field anomalies can serve as useful location features.

Based on the observation that a user is very likely to follow
the main direction of the path and is very likely to continue
walking in a consistent direction rather than making random
turns, we come up with a map-constrained, position-aware,
inertial-based (MPI) particle motion model to drive particles.
In this MPI motion model, as illustrated in Figure 8, the
direction ~u of a newborn particle (e.g., Particle A and D) is
determined by the direction ~upw of the pathway it is on; and
that of a resampling particle (e.g., Particle B and C) is that
of the previous step plus the relative direction change ~ugyro
during this step, hence the term inertial-based. The relative
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Figure 9. The Manhattan distance of signal vectors between all pairs of profiled locations in a large mall. Location 1-65 are from one corridor and location
66-125 are from the other.

Figure 8. Illustration of the map-constrained, position-aware, inertial-
based particle motion model. The likelihood of particle’s direction is jointly
determined by its position on the map and its direction in the previous step.

direction is obtained from the gyroscope using the technique
presented in Section VI.

Note that the gyroscope may occasionally give a false posi-
tive conclusion of turns due to the possibility of sudden attitude
change (e.g., change holding hands), but it seldom misses the
detection of real turns. Therefore, if the gyroscope indicates
no turn, we may significantly reduce (or even eliminate) the
possibility of a direction turn (e.g., Particle B); whereas when
the gyroscope indicates a turn, we will increase the probability
of a turn in direction but still retain a certain probability of
the original direction (e.g., Particle C). If the turn indication
is a false alarm, then the particles will soon hit the wall and
die. Clearly, Magicol makes more use of the map information
than existing tracking systems. It uses not only the walls to
kill incorrectly moved particles, but also uses the pathway
directions to better initialize a particle’s direction.

D. Augmented Particle Filter
All these techniques are combined into an augmented parti-

cle filter that executes on a per-step basis. The state of a particle
includes its current location ~p = {x, y} and also the heading
direction ~u. The observations are obtained from the mobile
client, include step information (step length, relative direction
change) and the magnetic fingerprint vector collected during

the step.
Particle Movement: With new step input, location of each

particle is updated as follows:

~u′ =

{
P (~upw) for newborn particles

~u+ ~ugyro + ∆~u for resampling particles (1)

p′.pos = p.pos+ (l + δ) · ~u′ (2)

where P (~upw) is a probabilistic selection function that in-
stantiates the direction of a newborn particle according to its
position. ∆~u accounts for possible direction errors that are also
assumed to follow a Gaussian distribution with zero mean and
variance set to 10◦. l is the estimated step length and δ obeys a
Gaussian distribution with zero mean and variance set to 0.2l
in order to capture the possible error of step length estimation.

Particle Weight Assignment: The weight of a particle is
set to

κ = e−
d2

2σ2 (3)

where d is the resulting DTW distance and σ is a parameter
that reflects the overall disturbance intensity of the indoor
magnetic field. Particularly, if a particle hits a wall, its weight
will be significantly reduced (×0.01, but not eliminated).

Particle Resampling: Once after particle weight updating,
we conduct weight-based importance sampling over the entire
set of particles. This way, particles moving at wrong directions
will eventually be killed as the mismatches between the
magnetic signals will continuously reduce their weight.
Position Decision Strategy: The distribution of particles
reflects the likelihood of the real position. There two common
ways to determine the position from particle distribution: one
is to use the position of the particle with maximum weight;
the other is to perform a weighted average on all particles’
positions using their own weights. Through experiments, we
found that the former method locks on the user more quickly
but may fluctuate more during the tracking process, whereas
the latter method takes longer time to lock on but gives more
steady position during tracking. In Magicol, we use a hybrid



method: initially go after the particle with maximum weight,
and switch to weighted average once it converges. We use the
weighted average of top 50% most weighted particles.

V. FUSION WITH WIFI

Tracking using only the magnetic field and inertial sensors
is universally applicable. However, given the wide deployment
of WiFi, we may obtain both WiFi and magnetic signals
simultaneously in many venues. In this section, we study
the fusion of WiFi and magnetic signal towards even better
positioning and tracking accuracy.

A. Rationale of Fusion
The fundamental reason that Magicol can be combined with

a WiFi-based localization method lies in their complementary
location resolving capabilities. Conceptually, WiFi is a short
range radio. It is guaranteed that remote locations will see
different radio environment (less or no common APs), whereas
nearby locations will share similar radio environment. On the
contrary, the geomagnetic field is global. Remote locations
may have similar magnetic fields, whereas nearby locations
may have different ones due to the local disturbance to the
magnetic field.

This concept is better illustrated in Figure 9, which shows
the normalized distances in the signal space between every
pair of locations sequentially sampled from two distant parallel
corridors. From Figure 9(a), we can see that the distances
between neighboring locations can be large for those locations
where the magnetic field is indeed disturbed. However, distant
locations may also observe similar magnetic signals, especially
when their magnetic fields are less disturbed. On the other
hand, as shown in Figure 9(b), WiFi signals are usually similar
for nearby locations, but quite different for faraway locations.
If we consider both the magnetic and the WiFi signals, the
resulting distances (in the signal space) will be a blend of the
two signals, as evidenced in Figure 9(c). This clearly indicates
the potential of combining the WiFi and magnetic signals.

B. Intuitive Fusion Methods
Given the complementary properties of magnetic field and

WiFi, it is natural to think of a few possible ways to fuse them.
The first way is to use WiFi for a rough position estimation
and constrain particle distribution to a proximity of the WiFi
location estimate. This is particular helpful at the initial of
tracking and lead to faster convergence. The second way is to
incorporate the similarity of WiFi signals to weigh particles
during the filtering process. For instance, the weight of a
particle is set to

κ = e
− d2m

2σ2m + e
− d2w

2σ2w (4)

where dm and dw are the distance in signal space for the
magnetic and WiFi signals, respectively. σm and σw are
parameters adjusting the impact of signal distances. A third
way is to hybrid the first two by weighing particles with both
signal modalities but also constrain the particle distribution to
be within a proximity of WiFi location estimate.

C. Fusion for Better Accuracy
It is well known that the WiFi localization results are

jumpy – measurements of two neighboring positions can lead
to quite different actual position estimates. This affects the
performance of fusion using the intuitive methods presented
above. To achieve better accuracy, we propose a two-pass
bidirectional particle filtering (TBPF) process to fuse WiFi
and magnetic signals during tracking, where magnetic signals
are available (e.g., logged in the background) when a WiFi
scan is performed. The cost we pay is more computation.

Figure 10. Illustration of the two-pass bidirectional particle filtering process.

Two-pass Bidirectional Particle Filtering: Figure 10 illus-
trate the TBPF process. In the first pass, we first obtain the
rough location estimate P0 using WiFi signals, and apply a
backward particle filtering along the reversed motion trace.
In this pass, the hybrid fusion scheme mentioned above is
adopted. The locality-preserving property of WiFi guarantees
the true position to be near P0. Therefore, we distribute initial
particles only within a proximity of P0, i.e., a circle centered at
P0 with radius R. With the backward particle filtering process,
we obtain a good estimate of the starting position Pt of the
logged trace. In the second pass, we perform a forward particle
filtering along the motion trace normally, but initialize all the
particles to be within a circle around Pt with radius r. Finally,
we perform a post-filtering process and retain only the particles
that fall within the range R′ to P0. The weighted average of
these particles and obtain the final localization result P ′0.

Note that the same background logged motion trace are used
twice in the TBPF. This makes the particle filtering in the
second pass biased. In general, the bias will lead to either
better or worse results. It is thus crucial to apply the final
post-filtering process (i.e., selecting particles within radius R′
to P0). This selection implicitly uses some truth information
– the true location must be around P0, and ensures the bias is
favorable.

VI. M-MAP CONSTRUCTION

The conventional site survey approach suffers from low
efficiency as the surveyor needs to first fix the location be-
fore collecting any sensor readings. SLAM techniques (either
employing robots [26] or via crowdsourcing [19, 20]) suffer
from poor initial accuracy and slow convergence. We believe



that site survey is an effective method because the surveyor is
more dedicated to the task. Our idea is to lower the bar such
that ordinary mobile phone users can do the survey job at high
efficiency.

To this end, we devise a simple compliant-walking-based
data collection method: the surveyor simply walks along a pre-
planned survey path from the starting point to the end point
with the phone in a fixed body position. The system records
all the IMU data including accelerations, gyroscope readings,
and magnetic signals from the magnetometer during the walk.
The actual user trace is then estimated and matched against
the pre-planned path to fix the location of each step. Then
locations of all collected magnetic signals are interpolated from
neighboring step positions.

Note that here we focus on the design of the compliant-
walking-based site survey method. Businesses that wish to
build an indoor location system can utilize crowdsourcing or
outsource the survey task to crowd tasking platforms, such
as Amazon Mechanical Turk [27] to quickly bootstrap their
services. We leave the design of incentive models of site survey
as our future work.
Survey Plan Creation: Given a venue map, we need to
first come up with a survey plan that covers all paths (of
interest). It can be generated manually or following some
simple rule such as a right-hand or left-hand wall follower
rule [28]. Considering the spatial coverage, the path is through
the middle for narrow pathways, whereas for extra wide path
segments or open spaces, we add additional survey paths that
are parallel to the middle one but separated by about 3 meters.
This is empirically determined by experiments and is supported
by the achievable accuracy of Magicol shown in Section VII.
Walking Trace Estimation: Walking trace estimation using
IMU sensors is a well-studied topic. The estimation consists
of step detection, step length estimation, and step direction
estimation. We adopt the techniques used in [25]. However, in-
stead of inferring the heading direction from the magnetometer,
we estimate the relative heading direction change in that step
using gyroscope. As the device may be put in any attitude, we
convert the sensor readings from the device’s body frame to
its vehicle-carried North East Down (NED) frame [29], which
is close to the local World Coordinate System. The conversion
matrix is obtained by estimating the gravity in the device’s
body frame by taking the average acceleration over the past
several steps. Since the turning action always happen along
the horizontal plane that is perpendicular to the gravity, we can
estimate the turning angle by integrating the Z-axial rotation in
the vehicle-carried NED frame. A negative or positive turning
angle indicates a direction change towards the left or right,
regardless of the device’s actual attitude.
Turn Detection: We apply a running detection window
(empirically set to 7 steps) to the resulting walking traces.
We identify a candidate turn if the sum of the angle changes
within the detection window exceeds a threshold, say 30
degrees. A real turn may lead to multiple candidate turns. We
further merge the consecutive turns and perform a local search
such that any additional steps belonging to the same turn are
included. This ensures the integrity of the turn and improves

Figure 11. A pre-planned path and the estimated trace, annotated with ground
truth and estimated turns.

the detection accuracy of the turning angle. The turning point
is set at the step with the sharpest angle changes.
Trace Matching via Dynamic Programming: We match an
estimated user trace to its corresponding pre-planned path by
first matching the turns because the turns are the most salient
features of a user trace. We have two lists of turns: one ground
truth turn list (G) obtained from the pre-planned paths and one
candidate turn list (C) from the estimated user traces. Taking
Figure 11 as an example, we have

G = {Psg, A,B,C,D,E, F,G,H,K,Peg}

and

C = {Psc, T1, T2, T3, · · · , T12, T13, T14, Pec}.

The task of turn matching is essentially to optimally match the
two sequences G and C.

The start and end points are directly matched and the overall
length of the estimated trace is scaled to have the same length
as the pre-planned path. When matching intermediate turns,
there are two major sources of errors in walking trace estima-
tion: one is walking distance errors that arise from the incorrect
detection of steps or errors in step length estimation, and
the other is angle detection errors due to instantaneous errors
such as a hand shake, sensor drift, and imperfect walking. To
consider both error sources, we define the following penalty
function for matching the jth turn in C to the ith turn in G:

ε(i, j) = ∆D(i, j) + ∆A(i, j)

where ∆D(i, j) = |Lg(i) − Lc(j)|/Lg(i) is the relative
distance difference for the ith path segment, and ∆A(i, j) =
|∠gi− ∠cj|/∠gi is the relative angle difference.

With a given penalty function, the sequence matching prob-
lem can be effectively handled using dynamic programming.
With the algorithm, the example in Figure 11 would generate
the following optimal matching results:

{Psc, T1, T2, T3, T4,−,−,−, T8, T9, T10, T11,−, T13,−, Pec}

where ‘−’ indicates a discarded candidate turn.
Magnetic Field Map Construction: After fixing the turns’
positions, we calculate the location of the intermediate steps
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Figure 12. Layout of the three testing environments, with data collection paths and a highlighted typical walking trace.

proportionally according to their estimated step length and the
overall distance between two bounding turns. The location of
each fingerprint is then interpolated from the locations of the
two bounding steps, proportional to their time differences. The
final M-Map is constructed by extrapolating the magnetic field
strength on the survey path towards both sides until reaching
the walls. For wide pathways, multiple parallel survey paths
may exist. Magnetic field strengths at intermediate locations
are interpolated according to their distances to each bounding
path. For crossroads and turning areas, the average of the
interpolated strengths (from different survey paths) is used.
Figure 13 shows the 2-D view of the resulting M-Map for an
office building (refer to Figure 12(a)), which is used in the
evaluation in Section VII. From the figure, we can clearly see
the locally-specific disturbances of the indoor magnetic field.

Figure 13. Generated M-Map for an office building, overlaid on the floor
plan.

VII. SYSTEM EVALUATION

In this section we will first present micro-benchmark results
on the key components of the Magicol system, and then

evaluate the system in a variety of representative indoor envi-
ronments, to understand its effectiveness and limitations. Due
to space constraints, we put the evaluation of map construction
and complexity and energy consumption analysis in Appendix.

A. Implementation
We implemented a Magicol client on HTC Mazaa smart-

phone with a 1GHz processor and 576MB RAM, running
Windows Phone 7.5, and the Magicol Cloud service on a Dell
PC, with a 2.8GHz processor and 4G RAM, running Windows
7. We adopted KLD-sampling [30] to change the number of
particles on-the-fly on the basis of their distribution. The initial
number of particles was 3000.
Background Data Logging: The mobile client performed
continuous background IMU sampling and walking state de-
tection [25]. When the user was detected to be walking, the
step information and the magnetic field signals were logged.
The IMU sampling frequency was set to 30Hz for both
the accelerometer and the magnetometer, and 50Hz for the
gyroscope. When the user issued a location query, a WiFi
scan was also conducted. As will be shown later, only a short
duration (e.g. 30 seconds) of the latest walking trace was
usually sufficient to localize the user. Therefore, we may only
need to keep a small buffer for the walking trace.

B. Localization using Magnetic Field Only

Testing Environment and Ground Truth Acquisition: We
extensively evaluated the system performance in three repre-
sentative indoor environments: an office floor, an Underground
Parking Lot (UPL) and a supermarket, with a testing area of
about 4000m2, 3850m2, and 1900m2, respectively. Floor maps
of the three testing environments are shown in Figure 12, along
with survey paths using dashed lines and one typical walking
trace using solid lines. The supermarket was huge and we
walked only a portion of it, as shown in the red rectangle in
the upper picture in Figure 12(c). Overall, we collected more
than 100 indoor walking traces with a total walking distance
of 25 kilometers. To obtain the ground truth of walking, we set



up many landmarks and obtain their real positions in advance,
and record the time (by tapping on the phone screen) when
passing by those landmarks. Localization error is then obtained
by computing the Euclidian distance between the estimated
positions and the ground truth.

The results were compared with the Dead Reckoning (DR)
based localization system [25]. Note that we have used exactly
the same step detection and step length estimation techniques.
Thus, the performance differences are purely due to our way
of leveraging the magnetic field.

Localization with Long Traces: We walked many traces
in the whole area with randomly picked starting points and
made random turns. These walks were relatively long, around
2 minutes. Figure 14(a) shows the cumulative distribution
function (CDF) of localization errors for the three testing
environments. We can see that Magicol significantly and
consistently outperformed the Dead Reckoning system for all
testing environments. For the office floor, the 80 percentile
error of Magicol was 4m while it was around 9.5m for DR;
For the supermarket, performances of both Magicol and DR
are still reasonably good as the 80 percentile errors were
approximately 3.5m and 10m, respectively. However, because
supermarket was a more complex and sophisticated environ-
ment, both CDF curves increased more slowly afterwards. For
the UPL, Magicol achieved extremely good accuracy – the 80
percentile of error was only 1m. This is due to the more severe
magnetic field anomalies in the UPL. The accuracy of DR was
also good for the UPL, and the 80 percentile error was about
4m. The reason was due to the simple layout of the pathways.

Figure 14(b) shows the intermediate localization results
(during particle filtering) against the walking time for typical
traces, for all three environments. From the figure, we can see
that Magicol exhibited a steadier performance: after the initial
convergence process, it rarely diverged again. But for DR, there
were several spikes after the initial convergence. The reason
was due to the erroneous externally sensed direction. This
phenomenon indicates an interesting difference between Magi-
col and conventional tracking-based systems: conventional
tracking-based systems rely on turns to kill unlikely particles
[25], while Magicol performs equally well for straight walking
traces, thanks to the continuous sensing of the magnetic field.

Localization Performance vs Trace Length: Figure 14(b)
indicates that Magicol can localize a user after about 20
seconds of walking. This suggests that we may not need to
log very long motion traces. We thus evaluated the localization
performance of Magicol at different logged trace lengths. We
collected 5 long traces in each testing environment and ran-
domly selected a portion of them to emulate motion traces with
different lengths. Figure 14(c) shows the average localization
error at different trace lengths for both Magicol and DR for the
three testing environments. We can see that Magicol typically
achieved good accuracy for log lengths longer than 20 seconds
and the resulting localization error was only a few meters,
whereas the performance of DR was much worse even with
much longer traces. As the length of logged trace has a direct
impact on the execution of the augmented particle filtering (see
Appendix) , this indicates another advantage of Magicol over

conventional DR.
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Figure 15. Localization robustness among users.

Robustness among Different Users: The above experimental
results on tracking and location accuracy were based on the
traces mainly collected by two of our authors. To examine
Magicol’s robustness when used by other people that may
have different stride lengths and walking speeds, we employed
five other users (4 male and 1 female) with different heights
(between 1.60m to 1.87m) and asked them to walk along the
same path (around 40 seconds) in the office environment. The
CDF of the localization error for all five users are plotted in
Figure 15. From the figure we can see that the five CDF curves
are very close, and they are consistent with the experimental
results from our own walks. This demonstrates the robustness
and practicality of Magicol.

C. Magnetic-WiFi Fusion
Among the three testing environments, only the office floor

had dense enough WiFi AP deployment that WiFi-based local-
ization methods worked. Specifically, there was only one AP
in the UPL and 3 APs in the subarea of the supermarket. This
evidently showcases the pervasive applicability of Magicol.
Therefore, we only studied the combination of Magicol (i.e.,
using normal particle filtering) and WiFi-based schemes for the
office floor. We used Radar [1] and EZ [3] in our experiments.
RADAR is an RSS fingerprinting scheme. An incoming mea-
surement is matched against all fingerprints in the database.
We used the K-NN method (K = 5) to estimate location.
EZ is a model-based scheme. It infers various propagation
model parameters based on a large number of measurements
in advance. An incoming measurement is applied to the model
to obtain the estimated position. We have used the same
compliant-walking method (in Section VI) to construct the M-
Map and the WiFi location database, and to compute the model
parameters with the same set of collected data.

Localization Accuracy with Magnetic-WiFi Fusion: Fig-
ure 16 shows the point localization accuracy of Radar, EZ,
Magicol, and when fused with WiFi using TBPF. Radar and
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Figure 14. Localization performance in different testing environments.

EZ affects TBPF’s performance due to different initial position.
From the figure, we can see that Magicol (with a 40-second
motion trace) can achieve comparable performance to Radar
and EZ on its own. The combination leads to a more significant
performance improvement than using any individual method.
When combined with Radar, the 90 percentile accuracy was
about 5.3m, which was about a 50% improvement over that
of Radar (i.e., 10.1m). Similarly, when combined with EZ, the
90 percentile accuracy improved to 3.9m over the original 8m
accuracy achieved using EZ only. From the figure, we can
also observe that the combination is more powerful for those
locations where individual method yields larger errors. This is
due to the complimentary nature of magnetic and WiFi signals.
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Figure 16. Localization performance comparison.

Tracking Performance with Magnetic-WiFi Fusion: We
evaluate the tracking accuracy with different magnetic-WiFi
fusion approaches, namely the hybrid method (Eqn. 4) and
the proposed TBPF method, where we trace back for 15
steps upon each new WiFi scan. Experiments are conducted
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Figure 17. Tracking performance comparison with different magnetic-WiFi
fusion approaches.

in the office environment due to its dense WiFi deployment.
For comparison purpose, we also include the performances
when only magnetic field or WiFi is used in tracking (with
normal PF) as benchmarks. Note that even though WiFi was
continuously scanned, but it took about 2 seconds to obtain
a fingerprint. Thus, there is about a 3-step interval between
two subsequent fingerprints. Figure 17 shows the performance
gain of TBPF over normal PF (which is adopted in the hybrid
fusion approach) when magnetic field and WiFi are combined
in tracking. Compared with the 90 percentile accuracy of 2.1m
obtained by magnetism-based tracking which uses normal
particle filtering only, we see that the TBPF is very effective,
achieving a 57% improvement with 90 percentile accuracy of
less than 1m. The intuitive hybrid performs slightly worse
than using magnetism only, due to the jumpy nature of WiFi
signal, but does help to suppress large errors. We animated
and visually examined the tracking process of some traces
and found that the resulting distribution of TBPF is signifi-
cantly more concentrated than the cases of single pass particle
filtering. Compare against Figure 16, we found that tracking



accuracy significantly outperforms that of point localization. It
is reasonable due to the constraint imposed by dead reckoning
between subsequent WiFi scans. The cost we pay is extra
energy consumed by multiple WiFi scans.
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Figure 18. Tracking performance with magnetic-WiFi fusion, with reduced
WiFi sampling frequency

To see the impact of WiFi scan frequency, we also tried
to scan WiFi less frequently at roughly 10 seconds intervals
(about 15 steps). The results are shown in Figure 18. We can
see that the performance drops quickly, almost to that of using
magnetic field only. It is expected as most of steps do not
have a WiFi fingerprint. However, it is still helpful in confining
relatively larger errors.

As a final remark, Magicol was initially implemented and
evaluated on a Windows Phone. We have applied this tech-
nology in Travi-Navi [31] and also evaluated on a variety of
Android mobile devices (including Samsung Galaxy S2, S4,
Note3, HTC Desire and HTC Droid Incredible 2). The results
there confirmed that the design of Magicol is intrinsically
immune to device diversities due to its leverage of the shape
instead of the absolute sensed value of magnetic field.

VIII. RELATED WORK

Indoor localization is an extensively studied topic, mostly
relying on certain infrastructure, and WiFi is mostly explored
[1–4, 19, 20, 32]. We only review closely related work here.

IMU-based Tracking: IMU-tracking (a.k.a., Dead Reckon-
ing) is a well-studied topic for its infrastructure independency
[10, 25, 33–35]. These systems handle the noisy walking
directions caused by locally disturbed indoor magnetic field
through fusion with gyroscope readings to obtain compromised
heading directions. A map is usually used to constrain the
tracking error. In contrast, Magicol exploits the magnetic field
anomalies as useful features, and makes separate use of the
gyroscope and the magnetometer. Magicol makes more use
of the map for not only constraining the motion but also
initializing directions of particles.

Magnetism-based Localization: Geomagnetism was ex-
ploited for localization [21] or tracking purpose in the robotics
field using special hardware [15, 16, 36, 37]. However, these
techniques either requires dense samples of magnetic vector
which leads to tedious training overhead [21], or incur special
hardware or draw on existing tracking techniques (e.g. odo-
metric) which are not applicable to off-the-shelf smartphones
(e.g. due to unpredictable human behaviors, we do not know
the heading direction and can no longer use magnetic output
from X, Y, Z axis independently).

For smartphones, the geomagnetic field anomalies were
leveraged in a leader-follower scenario [13, 22]. In [23],
the authors leveraged observations of the ambient magnetic
field, but they only handled simple one-dimensional (e.g.,
in a straight pathway) situations and did not handle many
practical problems such as the various diversities that Magicol
does. In [38], Glanzer et al introduce a pedestrian navigation
system with human motion recognition. However, the pre-
mapped magnetic field information is only used to correct the
severe disturbance of indoor direction sensing. In [39], authors
leverage magnetic signatures to identify locations and rooms.
Although mobile phones are used to measure magnetic field
intensity, the system relies on pillars and only offers rough
positioning result (e.g. room-level). Kim et al explored geo-
magnetism for indoor localization in rather simplistic settings
– a single corridor in a building, and assumed known user
motion and the starting point [17]. Grand et al [24] propose a
light-weight magnetic map construction method and use online
particle filter to estimate the location of the handheld device.
However authors mainly emphasis the disturbance of magnetic
field whereas in Magicol, we jointly consider efficient database
construction, dynamic user motion behaviors, limited discerni-
bility of magnetic field, and run the localization algorithm in
a real-time manner. In addition, we further enhance Magicol
using complementary WiFi-based techniques at low energy
cost.

Location Database Construction: SLAM has been heavily
studied in the robotics field [26]. FootSLAM [11] used shoe-
mounted inertial sensors to construct the internal map for an
unknown building. Zee [19] studied the same problem for
mobile users using a crowdsourcing approach. Unloc [12]
explored various types of natural landmarks detectable from
sensor readings to calibrate user traces. These methods usually
suffer from poor initial accuracy of the mapping, and take
long time to reach an acceptable accuracy. In contrast, our
compliant-walking based approach aims at improving the
efficiency (essentially, any path needs only one visit) and, at
the same time, lowers the bar for site surveyors as they just
need to walk along a given path.

IX. CONCLUSION

In this paper, we present Magicol, a pervasive and practi-
cal, geomagnetism-based indoor localization system. We con-
ducted a comprehensive study of the indoor magnetic field and
designed Magicol with minimal assumptions. Magicol uses an
efficient compliant-walking-based data collection method for
database construction, and addresses all challenges that arise



from the magnetic field. In addition, we propose methods for
combining Magicol with infrastructure (WiFi)-based localiza-
tion methods to further improve accuracy. We implemented
Magicol on off-the-shelf smartphones and evaluated it in
three typical indoor environments and among different users.
The experimental results confirm the effectiveness and high
accuracy of Magicol.
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