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Abstract—Access card authentication is critical and essential
for many modern access control systems, which have been widely
deployed in various government, commercial and residential en-
vironments. However, due to the static identification information
exchange among the access cards and access control clients, it is
very challenging to fight against access control system breaches
due to reasons such as loss, stolen or unauthorized duplications
of the access cards. Although advanced biometric authentication
methods such as fingerprint and iris identification can further
identify the user who is requesting authorization, they incur
high system costs and access privileges can not be transferred
among trusted users. In this work, we introduce a sensory-data-
enhanced authentication for access control systems. By combining
sensory-data obtained from onboard sensors on the access cards
as well as the original encoded identification information, we are
able to effectively tackle the problems such as access card loss
and stolen. Our solution is backward-compatible with existing
access control systems and significantly increases the key spaces
for authentication. We theoretically demonstrate the potential
key space increases with simple sensor data and empirically
demonstrate simple rotations can increase key space by more
than 30, 000 times with an authentication accuracy of 95%.
We performed extensive simulations under various environment
settings and implemented our design on WISP to experimentally
verify the system performance.

I. INTRODUCTION

Access control is a mechanism which enables an authority
to control access to restricted areas and resources at a given
physical facility or computer-based information system. In
general, authentication methods in access control systems can
be divided into two broad categories. The first category is
based on mechanical matching, such as keys and combination
locks. Individuals are authenticated in these access control
systems if and only if the blade of the key matches the keyway
of the lock or the correct numerical sequence for combination
lock has been dialed. Due to the physical constraints of
mechanical matching systems, they are insufficient to meet the
demanding requirements of access control authentication for
critical infrastructures. On the other hand, it is also very hard
to frequently change the interior structure of such matching
mechanisms for security enhancement.

The other category of authentication for access control
systems is electronic authentication including barcode, mag-
netic stripe, biometrics and etc. Compared with mechanical
matching authentications, the electronic authentications such

as RFID-based smart card offer much more convenience and
flexibility for both administrators and users of access control
systems. However, it still suffers from similar loss of keys
problem since authentication is only based on the encoded
identification data on the card. Anyone who carries the card
will be granted the access and the security of the system still
can be compromised.

In order to further enhance the security of access control
systems, various biometric authentication mechanisms have
been introduced to identify the authorized personnel. Although
these biometric authentication methods such as fingerprint, iris
and voice recognitions are able to provide personal identifica-
tion, they have high infrastructure cost and access privileges
can not be transferred among trusted users.

In this work, we aim at bridging the gap between insufficien-
cy of existing electronic authentication solutions and the in-
creasing demand of high security guarantee for access control
systems. We design a novel electronic proximity authentication
method that enhances the security level of existing RFID-
based access control systems with backward compatibility.
Specifically, we add dynamic data into the traditional authen-
tication information by using sensors such as accelerometer,
gyroscope and etc.. This authentication method is adaptive to
the change of encryption complexity of the access control
systems and could be adopted with minor modification of
existing infrastructure. In summary, our contributions in this
work are as follows:

• We design and implement a sensory-data-enhanced au-
thentication mechanism for access control systems. Our
design is backward compatible with existing, deployed
RFID or access card readers.

• We theoretically prove and demonstrate that our sensory-
data-enhanced authentication significantly increases the
key space for proximity authentication systems with the
integration of just one low-cost sensor.

• We have fully implemented and built a running pro-
totype of the proposed sensory-data-enhanced authenti-
cation mechanism on the Intel Wireless Identification
and Sensing Platform (WISP). Based on our running
prototype, we have extensively evaluated our design in
terms of system accuracy and usability in the real-world
settings.
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The remainder of this paper is organized as follows. After
describing related work in Section II, we provide sensor data
based authentication method in Section III. We then provide
algorithm of our system in Section IV. System working
performance and simulations of our authentication method is
shown in Section V and Section VI. Finally, we conclude in
Section VII.

II. RELATED WORK

Recently, researchers have introduced several RFID-based
solutions to improve the security level of access control
systems [1], [2], [3]. Sample et al. present a solution for
adding capacitive touch sensing onto RFID tags for capacitive
user input [1]. To further improve the system security, Saxena
et al. [2] introduce a method to generate random numbers
to achieve motion detection based on the ambient noise of
onboard accelerometer of RFID tags. In [3], by utilizing on-
board sensors, authors design multiple context-aware selective
unlocking mechanisms to prevent unauthorized reading and
replay attacks.

The most similar paper to this work is the ”RFIDs and
secret handshakes” [4]. In this work, based on WISP, authors
introduce an approach to tackle the ghost-and-leech attack
between contactless cards and readers. Specifically, authors
propose a context-aware authentication method by allowing
contactless cards to communicate with readers only if the card
owner performs a secret handshake. However, different from
this quasi-biometrical authentication method which relies on
the unique user patterns exhibited during the authentication
process, we proposed an orthogonal solution which has a large
key space increase by combining dynamic sensory data and
static identification information during authentication process.
Our method is also compatible with the context-aware solution
proposed in [4].

Although currently there exist several sensor-aided solutions
to improve the security of access control systems, they have
relatively small improved key space and operate in limited
environment settings. Different from previous approaches, in
our design, we ensure that our system combines the best
of mechanical and electronic authentication methods which
is backward compatible with the existing deployed RFID
authentication systems and has large key space increases
with simple sensor readings. Trusted users can share and
reset access privilege among themselves. With such embedded
sensor information and significantly increased key space, we
can effectively counterattack the compromise of the access
control system.

III. SENSORY-DATA-ENHANCED AUTHENTICATION

DESIGN

The existing electronic proximity authentication of access
control systems is mainly based on the exchange of encoded
identification information stored on the access card. The
security and integrity of such static and passive authentication
mechanisms suffer from problems such as access card loss
and unauthorized duplications. In this work, we propose to use

sensory data obtained from wireless rechargeable sensors on
access cards to further enhance the security and robustness of
existing electronic proximity authentication systems. The main
idea of our system design is shown in Figure 1. When an ac-
cess card integrated with wireless rechargeable sensors enters
the communication range of an access control client, the access
card piggybacks its sensory data to conventional identification
information and transmits it (i.e. the electronic key) to the
access control client. The information received by the access
control client is then forwarded to the network server for
authentication. If both sensory data and identification match a
valid record in the authentication database, the network server
then instruments the actuator and grants the card holder the
access to the system. In this way, even an authentic access
card is in possession of a unauthorized personnel or has been
illegally duplicated, as long as the unauthorized card holder
does not know how to generate the correct sensory data, he or
she still can not access the system. Moreover, we successfully
remove the system vulnerable period between loss/stolen of
access card and the deactivation of the card after users’ report.
On the contrary, trusted users can share cards and predefined
actions with each other which is unavailable in biometric
authentication systems.

Fig. 1. System Function Diagram

Different from existing authentication methods such as
combining RFID and an additional keypad near the reader, our
method only revises authentication algorithm on the network
server without any modification of access clients. In fact,
since we piggyback sensory data to ID information before
transmitting to the reader, most existing works on commu-
nication encryption for RFID system can be easily adopted
into our authentication method [5], [6], [7], and therefore deal
with several security vulnerabilities such as replay attack and
eavesdropping.

A. Accelerometer-based Reference Design

The underlying identification information on access cards
normally are static. With the addition of dynamic sensory data
from onboard sensors, we are able to significantly increase the
security key space and hence the level of security for existing
electronic authentication systems. A wide variety of sensors
including accelerometer, gyroscope and etc. can be used in
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TABLE I
KEY SPACE BETWEEN DIFFERENT BASIC ROTATION NUMBERS k AND GRANULARITY OF ROTATION RECOGNITIONn

n = 4, k = 3 n = 4, k = 5 n = 4, k = 8 n = 8, k = 3 n = 8, k = 5 n = 8, k = 8

Key Space 864 31104 6718464 21952 4302592 1.18×10
10

our system. To illustrate the basic concept and the resulting
security enhancement of our sensory data enhanced access
control system design, we use three-axis accelerometer as an
example in the following sections. In particular, we utilize
the sensory data generated from the rotation of accelerometer
to introduce a reference design for the proposed sensory
data enhanced authentication scheme. Through our prototyping
system and real world experiments, we notice such a rotation-
based design is a feasible and practical option for the proposed
generic sensory-data-enhanced authentication scheme.

For an accelerometer, if it is being rotated, the static acceler-
ation of gravity on its three axes will change accordingly. For
a two-dimensional rotation, we can calculate the tilt angle α of
an accelerometer from static acceleration of gravity on its X-
Axis and Y-Axis to determine the position of the accelerometer
in a two-dimensional plane.

In Figure 2 we illustrate a simple example on how to
determine the position of an accelerometer. In Figure 2, Ax

and Ay are acceleration components of gravity on Axis-X and
Axis-Y, respectively. The tilt angle α can then be calculated
by equation Ax = Gcosα and Ay = Gsinα, where G is the
static acceleration of gravity. We define the most basic rules

�

��

�
��

Fig. 2. Accelerometer Rotation Example

and parameters for two-dimensional rotations, which can be
used to express more complex rotation actions.

• Basic rotation rules:
– For all rotations, they are two-dimensional;
– The rotation is omnidirectional, either clockwise or

counterclockwise;
– The new rotation starts from the end position of the

previous one;
– Any single basic rotation does not exceed 2π de-

grees.

• Basic rotation parameters:
– Granularity of the Rotation Recognition n: Every

two different static positions with their tilt degree gap

bigger than (2π/n) can be identified and n refers to
the maximal number of recognizable rotations within
one round. The granularity of recognition indicates
the sensing capability of angle degree fluctuation.

– The Number of Basic Rotations k: The number
of basic actions performed in one rotation sequence.
Basic rotation number reveals the complexity of
encryption.

Figure 3 shows an example of rotation sequence with three
basic rotations (k = 3) and granularity of the recognition
n = 8. CW and CCW in Figure 3 denotes clockwise
and counterclockwise, respectively. In Figure 3, initially the
accelerometer is tilted π

4
degree to the Y-Axis. Then the

accelerometer is rotated π
2

degree clockwise, 3π
2

degrees
counterclockwise and 5π

4
degrees clockwise, respectively. All

rotations are in line with basic rotation rules defined above.

�
�

�
�

Fig. 3. Rotation Sequence Diagram (2D)

Based on definitions above, we can represent the multitude
of the key space increase for a two-dimensional rotation by
the following equation:

P2D(n, k) = n[2(n− 1)]k (1)

In Equation 1, n denotes the number of different possible
starting positions for the first basic rotation. Then for the
following k rotations, we just need to determine the direc-
tion, we can either clockwise or counterclockwise rotate the
accelerometer to all other n− 1 possible positions.

In Table I, we summarize possible key spaces for two-
dimensional rotations with different number of basic rotations
k and the granularity of recognition n. From this table, we
can see with just such simple rotations, we can significant-
ly increase the key space for access authentication systems

238



and therefore increase the security level of the systems.
For example, with the number of basic rotations increases
from k to k + 1, the key space will be multiplied by
P2D(n, k + 1)/P2D(n, k) = 2n − 2. If n = 4, which is
a relatively small value, by just adding one simple basic
rotation, the key space will increase six-fold! In addition,
since we piggyback sensory-data to the original underlying
identification information on the card, encryption complexity
improvement of the conventional identification information
will equally increase system security level under our sensory-
data-enhanced authentication mechanism.

IV. ROTATION DETECTION AND RECOGNITION

In the previous section, we discuss the potential of large key
space increase for our sensory-data-enhanced authentication
design. In this section, we further elaborate on the detailed
sensor rotation detection and recognition algorithms.

One complete sensory-data-enhanced authentication process
consists of a sequence of basic rotations. In order to accurately
identify each individual basic rotations from raw accelerometer
data, we perform following three operations in the network
server.

A. Data Pre-Processing

The first step of rotation recognition is data pre-processing.
In this step, the main goals are to separate and filter each
individual basic rotations from a series of raw accelerometer
data.
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Fig. 4. Example Sensory Data for a 3D Rotation

In order to separate the individual basic rotations, we
first need to identify the pause between two consecutive
rotations. During such pauses, the three-axis readings of an
accelerometer would remain relatively stable and unchanged
for a short period of time. In order to accurately recognize
such pauses and separate different basic rotations, we adopt a
sliding window approach. In this approach, the accelerometer
readings in the first tw second are buffered into the sliding

window. All data in the sliding window are then fitted by a
first-order polynomial function. If the coefficient of first-order
polynomial is less than a threshold (1 in our implementation),
we consider the accelerometer remain stationary within the
time frame of this window. Followed by this pause detection
in the current window, the window would slide for a step
of ts seconds, with ts duration of new data appended to
the end of the sliding window while the first ts duration of
sensory data are discarded. Empirically, we set tw = 1s and
ts = 0.3s in our system implementation. In this way, we have
achieved accurate separation of basic rotations in one complete
authentication. To visualize above data pre-processing step,
Figure 4 shows one authentication with 4 basic rotations
that performed slowly on our prototype implementation. The
shaded regions represent sliding windows at three pauses.
Clearly from Figure 4, we can see the accelerations on three
axes of the accelerometer are rather stable during pauses
between different basic rotations.

After identifying pauses between basic rotations, we then
use least square estimation to fit the raw readings for each
individual basic rotation from the accelerometer.

Assuming the accelerometer readings for one basic rotation
on one of the three axes is:
pi = (xi, yi), i = 0, 1, 2, · · · ,m
Then the least square estimation tries to build a polynomial

function below:

y = f(x) = a0x
m + a1x

m−1 + · · ·+ am−1x+ b (2)

such that

min(F (ak, b)) = min(
∑

(f(xi)− pi)
2)

= min(

m∑

i=0

(f(xi)− pi)
2)

k = 0, . . . ,m− 1

(3)

In Section V, we discuss fitting effect in detail and make
the decision of m through prototype experiments.

B. Feature Vector Extraction

After separating basic rotations for one single authentica-
tion, we match them with standard feature vectors. As feature
based classification of time-series data has a simple model and
lower computation, we choose this method for rotation recog-
nitions. First, feature vectors (F-Vectors) for each individual
basic rotations are extracted based on their fitting functions
created in the previous section. Specifically, we extract the
start and end sensory data, the maximal and minimal sensor
readings and the corresponding time of these events within
one basic rotation. Then for a three-axis accelerometer, we
can represent their feature vectors using the following set of
equations:

Tx = {vx} = {vx start, vx end, vx max, vx min}

Ty = {vy} = {vy start, vy end, vy max, vy min}

Tz = {vz} = {vz start, vz end, vz max, vz min}

v ∈ R
2
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where v = (value, time) is a vector consisting of fitted
acceleration value and its relative time within one basic
rotation. Figure 5 shows the F-vectors of fitted basic rotation
in Figure 7 on the X-Axis.
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Fig. 5. F-Vectors of An Example Basic Rotation

C. F-Vectors Matching

After extracting feature vectors, we then try to match the
extracted feature vector with standard feature vectors in the
database to recognize a specific basic rotation. Standard feature
vectors with given n could be mathematically calculated and
automatically generated since the acceleration components on
three axes represent a trigonometric relationship with acceler-
ation of gravity. Taking the rotation in Figure 2 as an example,
after the accelerometer clockwise rotates π degrees, the accel-
eration components Ax and Ay during such rotation can be
calculated as Ax = Gcosθ and Ay = Gsinθ (θ ∈ [α, α+ π]).
Therefore, it is easy for users to reset their keys without any
modification on access cards.

In order to match extracted F-vectors of a basic rotation
to standard ones in database, we use Euclidean distance
between them to measure the closeness of these two vectors.
Specifically we use following set of equations for three axes:

dx = | Tx − Sx |

dy = | Ty − Sy |

dz = | Tz − Sz |

where

Sx = {v̄x} = {v̄x start, v̄x end, v̄x max, v̄x min}

Sy = {v̄y} = {v̄y start, v̄y end, v̄y max, v̄y min}

Sz = {v̄z} = {v̄z start, v̄z end, v̄z max, v̄z min}

The closeness between the extracted feature vector and a
standard feature vectors then can be expressed as:

R = max (
1

dx + dy + dz
)

To identify a basic rotation from the extracted feature vector,
we choose the one that has the maximal R value for a
corresponding standard feature vector.

V. TESTBED EVALUATION

To evaluate our proposed sensory-data-enhanced authenti-
cation method, a prototype system is built based on the Intel
Wireless Identification and Sensing Platform (WISPs) [8].
WISP is a fully-passive ultra high frequency (UHF) RFID tag
which integrates an ultra-low-power processor and several low-
power sensors such as temperature sensor and accelerometer.
Through WISP’s antenna, the signal from standard UHF RFID
readers can be used for both communication and powering the
entire WISP.

In the prototype system, an antenna-reshaped WISP tag
equipped with an accelerometer is integrated onto a standard
access card. WISP tags we use are backward-compatible with
existing RFID standards and hardware. Therefore they can be
powered and read by any unmodified, commercially available
UHF RFID readers. We use Impinj Speedway Reader IPJ-
R1000 as RFID access control client, which provides network
connectivity between WISP tags and backend authentication
computer servers. Figure 6 is a picture of our prototype system.

Fig. 6. Antenna-reshaped WISP Tag and Reader

A. Performance Evaluation

Authentication accuracy and delay are two most essential
factors for practical access control systems. In this section,
we comprehensively study the accuracy of our rotation recog-
nition algorithm on identifying a series of basic rotations
performed by users for system authentication with one single
accelerometer. Specifically we define accuracy rate of the
system authentication as the percentage of complex rotations
that have been correctly recognized for system authentication
algorithm. During the experiment, we also record rotation
delay which refers to the duration of a complete action and the
accuracy rate of authentication with varying number of basic
rotations k under two different granularity of recognition n.
In experiments, predefined rotations are randomly generated
by the computer and then performed by users. Due to the
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space constraint, we only present two-dimensional authenti-
cation evaluation and analysis in this paper. However, our
design also supports three-dimensional rotations and has been
implemented on our prototype as well.

1) Accuracy Rate of the System Authentication: Firstly, a
total of 600 basic rotations are performed by one user. The
experiment results are summarized in Table II. From Table II,

TABLE II
ACCURACY RATE VS. DIFFERENT k AND n

k = 1 k = 2 k = 3 k = 4 k = 5

n = 4 100% 93.3% 91.7% 90.0% 86.7%
n = 8 100% 91.7% 90.0% 90.0% 83.3%
Delay 1.9s 4.7s 7.7s 10.5s 13.3s

we can see that as the number of basic rotations k and the
granularity of rotation recognition n increase, the accuracy rate
decreases. This is because when the granularity of recognition
increases, the likelihood of mismatching two different basic
rotations also increases. In addition, as the number of basic
rotations increases, the false negative rate will sum up and
lead to a lower accuracy rate. From the last line of Table
II, we can observe that the delay of rotation grows almost
linearly but even when the number of basic rotations k = 5,
delay including breaks in between each basic rotations is no
more than 15s. By improving hardware design and optimizing
authentication algorithm, delay could be further reduced.

In order to further evaluate the practicability of our design
for daily usage, 50 complex rotations under each number of
basic rotations k are designated to 5 users. Accuracy rates of
authentication for each users are reported in Table III.

TABLE III
ACCURACY RATE VS. DIFFERENT USERS (n = 4)

k=1 k=2 k=3 k=4 k=5
User #1 100% 100% 90.0% 86.0% 78.0%
User #2 94.0% 92.0% 84.0% 72.0% 74.0%
User #3 98.0% 92.0% 82.0% 82.0% 70.0%
User #4 100% 98.0% 92.0% 84.0% 80.0%
User #5 98.0% 88.0% 76.0% 82.0% 72.0%

From Table III, we can see individual accuracy rate varies.
When k = 1 and k = 2, average accuracy rate are higher than
90% (98% and 94% respectively), while most of accuracy rates
when k > 4 are below 80%, which means an error exists in
every five certification processes. Among different users, when
k = 3, the variance of accuracy rate σ = 32.96, which is the
highest among five columns. However, variances of accuracy
rate are below 20 when k < 3. From results shown in Table III,
system achieves high security level on both average accuracy
rate and variance when k ≤ 2 if n = 4.

2) System Performance with Dual Accelerometers: During
single-sensor experiments, we observed there exists severe
sensory data loss between the WISP and reader. This is
because quality of energy harvesting and communication be-
tween WISP and reader cannot be always guaranteed during
rotation process. Particularly, we call continuous data loss in

a period of time as the data fracture. To reduce the impact of
data loss, we orthogonally placed 2 WISPs onto one smart
card. In this way, two different orientated antennae ensure
a more stable power supply and data transmission within
the entire space. Data from two different accelerometers are
complementary and consolidated for authentication. Same set
of experiments for single sensor have been done with dual
accelerometers. Results are shown in Table IV and Table
V(line of delay is omitted as there is no difference with single
accelerometer’s). From Table IV and Table V, compared with

TABLE IV
ACCURACY RATE VS. DIFFERENT k AND n WITH DUAL

ACCELEROMETERS

k = 1 k = 2 k = 3 k = 4 k = 5

n = 4 100% 100% 95% 95.0% 95.0%
n = 8 100% 95.0% 90.0% 90.0% 90.0%

single sensor experiments, it can be found that authentication
accuracy rate increased effectively in dual-sensor situation
where two accelerometers works at the same time. Specifically,
compare Table IV with Table II, when the granularity of
recognition n = 4, accuracy rates are all higher than 95% with
dual accelerometers while 80% under single accelerometer
situation are below 95%. In Table V, average accuracy rates
of all five columns are higher than 95% while in single
accelerometer experiment, accuracy rates in 14 of 25 cases
are below 90% and the worst case of accuracy rate is as low
as 70% which is occurred when user 3 performs a 5 basic-
rotation authentication. Based on Table I, these experiment
results demonstrate our proposed method could increase the
key space by more than 30000 times with a high enough
accuracy rate of authentication. Besides, accuracy rates with
dual accelerometers are much more stable. Among different
users, all accuracy rate variances among five distinct k are
below 7.5 and average variance of different k is 71.8% less
than that of single sensor (5.312 vs. 18.816).

TABLE V
ACCURACY RATE VS. DIFFERENT USERS WITH DUAL

ACCELEROMETERS (n = 4)

k=1 k=2 k=3 k=4 k=5
User #1 100% 100% 94.0% 94.0% 96.0%
User #2 100% 94.0% 96.0% 100% 98.0%
User #3 98.0% 96.0% 94.0% 96.0% 98.0%
User #4 96.0% 100% 100% 96.0% 92.0%
User #5 100% 100% 94.0% 94.0% 92.0%

B. System Insight

In our testbed implementation, we empirically choose the
order of least square estimation function m = 10 through
a series of experiments. From our experiments, we observe
lower order fitting can not guarantee a smooth curve (shown
in Figure 8(a)) while higher order fitting is not only increasing
computational complexity, but also introduce undesirable fluc-
tuation at the beginning and the end part of a basic rotation
(shown in Figure 8(b)). In Figure 7, we show an example
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of a fitted curve for one single basic rotation on the X-Axis
(m = 10). From this figure we can see although sample
readings of the accelerometer are unevenly distributed, the
resulting fitting curve is still very satisfactory. Therefore, 10th
degree polynomial is accepted in our system.

6 7 8 9 10 11 12 13 14
−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

A
cc

el
er

at
io

n 
(G

)

 

 

Samples of Axis X
Fitted Curve of Axis X

Fig. 7. Fitted Curve of An Example Action (m = 10)
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(a) Fitted Curve of An Example Ac-
tion (m = 6)
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(b) Fitted Curve of An Example Ac-
tion (m = 40)

Fig. 8. Fitted Curve of An Example Action(m �= 10)

Another practical issues of our proposed sensory-data-
enhanced authentication method is determining start and stop
of rotations. To solve this problem, various accelerometer-
based event detection algorithms can be adopted and we im-
plemented a function which triggers/ceases the main sensory-
data-enhanced authentication process when detecting a vibra-
tion of the accelerometer. This simple method exhibits a high
reliability during our testbed experiments and demonstrations
at Sensys 2011 [9]. In some cases, access card can be observed
by others when card holder performing rotation actions. In
case of movement forging, rotation can be performed in a
covert manner such as performing rotations within a black
box.

VI. SIMULATIONS

To evaluate the system performance of our authentication
method under various environment conditions, we provide
simulation results in this section. In our design, while higher
granularity of recognition and basic rotation numbers lead to
larger key spaces and security levels, they also cause heavier
workload and lower authentication accuracy rates. Therefore,
we are interested to investigate the impact of these two

parameters on the overall system performance. In addition,
during experiments, we notice that interference, sensor data
sample rate and communication quality between sensors and
access control clients are dominant factors to affect the system
performance. Therefore, simulations of various noises, sensory
data sample sizes and sensory data fractures are performed to
evaluate our algorithm with respect to the accuracy rate r.

In the simulation, we first randomly generate basic rotations
based on a given n and k and then compute acceleration data
of these rotations based on a specified sensor data sampling
rate. After that, k basic rotations are performed sequentially
with static intervals (pauses between basic rotations, e.g. 1.5
seconds). Except otherwise specified, we set n = 4 and k
follows a uniform distribution from 0 to 5 in simulations. To
further emulate the actual rotations, we also add noises, data
fractures to the raw simulated rotation data.

A. Impact of Noises on Authentication Accuracy

Firstly, we study the impact of noises on the system perfor-
mance. The measurement noise is denoted by the standard
deviation of measurements σp. In this part, we compare
accuracy rate r on sequential actions with different standard
deviations σs of noises. Impact of noises are shown in Figure
9. From Figure 9, we can see as noise increases, authentica-
tion accuracy rate decreases. Specially, figure 9(a) shows the
accuracy rate of different granularities of recognition n under
different noises and Figure 9(b) shows the accuracy rate under
different basic rotation numbers k. In Figure 9(a) and Figure
9(b), when standard deviations σ < 0.4, accuracy rate for most
k and n (5/6) are approximately 100%. It demonstrates that in
random action process with serious impact of noise, proposed
authentication method still has a good performance. During
our experiments, we observe the standard deviation of sensory
readings is around σp = 0.3, and this further demonstrates the
robustness of our system design.

B. Impact of Sensory Data Sample Sizes

Sensors powered by harvested RF energy face a severe
constraint of energy budget. Higher data sample rate leads
to increasing sensor/processor activities and therefore higher
energy consumption. As RF signals can only supply a limited
amount of energy, such excessive sensor/processor activities
then can lead to a lot of data loss. Here we use the amount of
sensory data sampled in one basic rotation action to describe
sample size. Specifically, we assume that system users perform
rotation actions with the same speed. Therefore sample size
S is denoted as the amount of samples per 90 degrees of an
individual action. Due to the constraints of energy and radio
physical limitations on WISP nodes, in practical settings we
can receive at most 50 samples per second in our prototype
system. If we perform the 90-degree rotation as slow as 1
second, the maximal possible sensory data sample size is
Smax = 50/1 = 50.

In this part, we study the impact of sample size S on the
accuracy rate r. In Figure 10, we set the standard deviations
of white noise to 0.5 and plot authentication accuracy rate
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Fig. 9. Impact of Different σ for a Fixed Number of Iterations (5000).

versus varied sensory data sample sizes. Figure 10(a) and
Figure 10(b) show accuracy rate with different granularities of
recognition n and numbers of basic rotation k, respectively.
From Figure 10(b), we can see that when granularity of
recognition n = 4 and sample size S > 20, the accuracy
rate is approximately 100% and remains stable. This result
validates our authentication effectiveness as maximal sensory
data sample size in actual systems is much higher than
20. However, in Figure 10(a), if granularity of recognition
continues increasing (e.g. n = 12), higher sensory data
sample size can not guarantee better system performance. This
is because we set the standard deviations of noise to 0.5
whereas higher granularity of recognition has smaller tolerance
of noise. Simulation observations shown in this section also
matches our empirical experiences that accuracy rate remains
stable when sample size is above 25.

C. Impact of Sensory Data Fractures

Data loss is a common issue in wireless communication.
For instance, sensory data between 10s and 11.8s in Figure
7 is lost during one of our experiments. We empirically
measured the probability of losing a continuous data block
(data fracture) in our prototype system and results are shown
below in TABLE VI.

In TABLE VI we count these fractures lasted more than
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Fig. 10. Impact of Different Sensory Data Sample Size for a Fixed Number
of Iterations (5000).

TABLE VI
DATA FRACTURE ANALYSIS (20 ITERATIONS)

Num. of Fracture 0 1 2 3

Existence Ratio 30.0% 50.0% 10.0% 10.0%

10% of the duration of the whole action. From this ta-
ble, we find the probability of data fracture is higher than
non-fracture’s (70% vs. 30%). It could be inferred that the
occurrence of fracture will increase during long actions as
more rotations are continuously performed. In this section, we
evaluate accuracy rate r under different data fractures. Denote
Ns as the maximal number of fractures and Ts as maximal
percentage of data fractures in an independent action. Ns

ranges between 0 to 3 whereas Ts ranges between 0 to 30. Both
of these two parameters follow the uniform distribution. For
example, if Ns = 2 and Ts = 20, it means that 2 data fractures
with each one occupies at most 20% data would exist in one
rotation. Figure 11 shows accuracy rates under various data
fractures percentage Ts. In all two figures, maximal numbers
of fracture Ns = 2.

Figure 11(a) is a comparison of accuracy rate with different
granularities of recognition n and Figure 11(b) shows accuracy
rate of different basic rotation numbers k. By comparing Fig-
ure 11(a) and Figure 11(b), we can see that although authen-

243



0 10 20 30 40 50

0.2

0.4

0.6

0.8

1

Different Data Fracture (%)

A
cc

ur
ac

y 
R

at
e

 

 

n = 4
n = 8
n = 12

(a) Accuracy Rate vs. Granularity of Recognition (k=3)

0 10 20 30 40 50

0.2

0.4

0.6

0.8

1

Different Data Fracture (%)

A
cc

ur
ac

y 
R

at
e

 

 

k = 1
k = 3
k = 5

(b) Accuracy Rate vs. Basic Rotation Numbers (n=4)

Fig. 11. Impact of Different Sensory Data Fractures for a Fixed Number of
Iterations (5000).

tication performance in all figures decreases when data loss
gets severe, accuracy rate with different basic rotation numbers
k observes relatively much less impact than the change of
granularity of recognition. This is because authentications with
higher granularity of recognition are more sensitive to data
loss. From Figure 11, we find that our recognition algorithm
is fracture-tolerant. In most cases, up to 20% sensory data
fracture could be tolerated in systems with little performance
degradation.

VII. CONCLUSIONS

In this paper, we proposes a sensory-data-enhanced authen-
tication for access control systems. Different from existing
schemes of authentication in access control systems, which
mainly based on static information on cards, our sensory-data-
enhanced authentication method combines sensory-data from
onboard sensors and conventional static ID information. For
sensory-data-enhanced authentication, we first theoretically
analyzes its highly increased key space, which exponentially
multiplied static key space in existing authentication methods.
To evaluate performance of our design, we built a prototype
system and validate authentication mechanism experimentally.
In experiments, the proposed authentication algorithm showed

a 95% high accuracy rate within different users. In the sim-
ulation part, we comprehensively study the impact of noise
of measurement, sensory data sample size and sensory data
loss, which found to be critical factors from experiments
on authentication algorithm. Most simulation results validate
our algorithm effectively. Growing popularity of electronically
based authentication in proximity access control systems calls
for a higher security level and greater ubiquity. We believe
that authentication bound with dynamic sensory data can
effectively enhanced security level of access control systems
and will take an important step towards electronically access
authentication in the future.
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