
Last-Mile Navigation Using Smartphones

Yuanchao Shu?†, Kang G. Shin†, Tian He‡, Jiming Chen?

? Zhejiang University, Hangzhou, China
† The University of Michigan, Ann Arbor, USA

‡ University of Minnesota, USA

ABSTRACT
Although GPS has become a standard component of smartphones,
providing accurate navigation during the last portion of a trip
remains an important but unsolved problem. Despite extensive
research on localization, the limited resolution of a map imposes
restrictions on the navigation engine in both indoor and outdoor
environments. To bridge the gap between the end position obtained
from legacy navigation services and the real destination, we pro-
pose FOLLOWME, a “last-mile” navigation system to enable plug-
and-play navigation in indoor and semi-outdoor environments.
FOLLOWME exploits the ubiquitous, stable geomagnetic field
and natural walking patterns to navigate the users to the same
destination taken by an earlier traveler. Unlike existing localization
and navigation systems, FOLLOWME is infrastructure-free, energy-
efficient and cost-saving. We implemented FOLLOWME on
smartphones, and evaluated it in a four-story campus building with
a testing area of 2000m2. Our experimental results with 5 users
show that 95% of spatial errors during navigation were 2m or less
with at least 50% energy savings over a benchmark system.

Categories and Subject Descriptors
C.3 [Special-purpose And Application-based Systems]: Real-
time and embedded systems; H.5.2 [Information Interfaces And
Presentation]: User Interfaces—User-centered design

General Terms
Design; Experimentation; Performance

Keywords
Navigation; Smartphone; Plug-and-Play System; Sensory Data

1. INTRODUCTION
Location-relevant services and applications have been studied

extensively within the mobile computing community over the past
several years. Most researchers have focused on the localization
of devices/users. To date, with the help of space satellites, meter-
level positioning accuracy can be achieved in outdoor environments

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MobiCom’15, September 7–11, 2015, Paris, France.
c© 2015 ACM. ISBN 978-1-4503-3619-2/15/09 ...$15.00.

DOI: http://dx.doi.org/10.1145/2789168.2790099.

(e.g., using GPS, GLONASS, etc.), and numerous approaches have
been proposed to localize users in indoor environments [1–7].

Accurate localization, map information and path planning
algorithms make real-time navigation a reality, but most research
efforts on navigation have been designed for path planning and
optimization, given starting and destination locations and wide-
area map information. Due to the lack of micro-map information,
however, navigation cannot always be successful, especially for the
last portion of a trip. For example, Google Map is able to navigate
users to a building (more specifically, an entrance of the building)
from a location tens of miles away, but fails to find a feasible path
to the final destination, e.g., a meeting room inside the building.
We call this imperfection the last-mile navigation problem.1

The main reason for this problem is the incomplete map informa-
tion, causing incorrect inference on existence and reachability of an
exact destination. Technically, most navigation services can guide
a user only to a place that is connected by at least one indexed path,
such as a trunk road. If the end location is not in the map database
(even if it is accessible in real world), navigation systems cannot
connect the coordinates of two locations.

Despite the extensive efforts made on indoor localization, few
of the resulting solutions have been deployed because of their
labor-intensive (hence time-consuming) bootstrapping, especially
for indoor map construction. Although multiple model-based [5, 8]
and crowdsourcing [6, 9, 10] techniques have been proposed, the
need for precise building structure information and a sustainable
incentive crowdsourcing mechanism limits their applicability [11].
Even if deployed, indoor localization systems may face an onerous
calibration process (for those radio-based fingerprint systems)
and need to deploy path-planning algorithms to enable online
navigation services. For example, Apple iBeacon can perform
localization (not navigation) only in the vicinity of pre-deployed
iBeacon devices, whereas Path Advisor [12] only provides offline
navigation paths with given start and end locations.

To meet the ever-growing demand for navigation, we propose a
new lightweight, plug-and-play, last-mile navigation system, called
FOLLOWME, to bridge the gap between the user’s final destination
and the end location provided by current navigation services. The
main idea of FOLLOWME is to use “scent” or “crumbs" left behind
by previous travelers (a.k.a. leaders). In FOLLOWME, A leader
records sensory data with his/her smartphone during the last-mile
trip. The location specific features extracted from the sensory
data are combined with the leader’s walking patterns (e.g., steps,
turns, going upstairs/downstairs) to build a reference trace. In

1The last mile was originally used in the field of communications
to refer to the final leg of communications connectivity to retail
customers. The last mile is often the speed bottleneck in
communication networks.

the design of FOLLOWME, we adopt the use of the ubiquitous
geomagnetic field, which is locally disturbed in indoor and semi-
outdoor environments (i.e., close to a building or in a semi-open
building, as in a metropolitan area populated with tall buildings)
[13–16]. We also consider how to incorporate other location-
specific signals including FM and GSM in Section 8.

During the navigation phase, the follower will first arrive at
the same starting location (e.g., a building entrance) as at least
one leader using legacy navigation services (e.g., Google Maps).
From then on, FOLLOWME installed in the follower’s smartphone
will compare and synchronize current sensor readings with the
reference (i.e., the leader’s) trace and guides the user, in real
time, from the starting location to the final destination. This way,
irrespective of incomplete map information, FOLLOWME is able
to navigate users2 to any point of interest (PoI) as long as it has
been visited earlier by a leader. For example, a meeting coordinator
can provide the attendees with the data trace from the building
entrances to the meeting room. Vendors and restaurant owners
can collect data traces on their own from several entrances of a
shopping mall to their stores and then share them with the public
on the cloud to entice customers. The leader and the follower can
also be the same person. For example, one can record a trace from a
parking spot to the airport terminal and use it for reverse navigation
back to one’s car after a multi-day trip.

Unlike other leader–follower navigation systems [17–19], FOL-
LOWME relies neither on an infrastructure (e.g., maps, WiFi
APs) nor any additional hardware (e.g., beacons, landmarks). In
addition, FOLLOWME exploits people’s natural walking patterns,
thus minimizing constraints imposed on users.

This paper makes the following three main contributions:

• We identify the last-mile navigation problem and propose an
infrastructure-free solution using only sensors on commodity
smartphones;

• We devise a novel online magnetic-field-based, step-constrained
trace synchronization technique for walking progress estima-
tion and navigation; and

• We implement FOLLOWME on Android smartphones and
evaluate it in a four-story campus building with 5 partici-
pants. 95% of spatial errors during navigation within 2m is
achieved with at least 50% energy savings over a benchmark
system.

The remainder of this paper is organized as follows. We
first provide motivation for a new indoor navigation system like
FOLLOWME in Section 2. We then present the architecture of
FOLLOWME in Section 3 and detailed illustrations in Section 4
and Section 5. Section 6 describes the implementation of a
prototype system, and Section 7 presents an in-depth evaluation
of FOLLOWME. Several practical issues and related work are
discussed in Section 8 and Section 9, respectively. Finally, we
conclude the paper in Section 10.

2. MOTIVATION
Given that various sensors and methods have been studied or

proposed for navigation, why is another navigation system like
FOLLOWME necessary? We justify the need for FOLLOWME by
answering a few natural questions as follows.
• Is GPS good enough for navigation? In most outdoor scenarios,

the answer is yes. However, as stated in the Introduction, GPS-
like satellite systems offer high positioning accuracy, but the

2We use followers and users interchangeably throughout the paper.

map’s insufficiency limits their potential to explore the last-mile
navigation and impairs the user experience. GPS also consumes
lots of power, suffers from the urban canyon effect, and has poor
coverage in indoor environments.
• Are guide maps sufficient for navigation in an indoor environ-

ment? Guide maps are helpful for indoor navigation, but they are
not always handy. Users also need to fully understand the guide
map, pinpoint the starting point and the destination, plan a route,
and remember the route. This imposes additional burden on the
users, especially on the elderly or children. Thus, FOLLOWME
is complementary to the guide map with minimal learning cost
to users.
• Is indoor localization helpful? Yes, but localization is not

the same as navigation. Most indoor localization systems
(ILSes) are built based on full knowledge of a floor map.
In essence, insufficient incentives for map construction and
time-consuming bootstrapping hinder their deployment and
acceptance. Moreover, in many cases, a complicated and large
ILS is an overkill for navigation needs. In other words, users
have to bear the additional cost of the entire map construction,
even they only need guidance along a single path. Therefore,
a lightweight and plug-and-play navigation system such as
FOLLOWME is necessary to fill the gap between high navigation
demands and limited ILSes deployments.

3. SYSTEM OVERVIEW
This section provides an overview of FOLLOWME, first present-

ing the system architecture in Section 3.1 and then a navigation
example in Section 3.2 to illustrate how FOLLOWME operates.

3.1 System Architecture
FOLLOWME consists of a trace-collection module and a nav-

igation module, both of which exploit multiple sensors in a
smartphone, such as accelerometer, gyroscope, magnetometer,
barometer, etc. Figure 1 shows the overall architecture of
FOLLOWME.

Step DetectorTurn Detector Level Detector

Reference Trace

Magnetometer AccelerometerGyroscope Barometer

Walking Progress Estimator Nav. Instructions

Trace Collection Module

Preprocessing

Navigation Module

Deviation Detector

Figure 1: Architecture of FOLLOWME.

Trace-Collection Module: This module works during the leader’s
walking trip to generate the reference trace. The leader activates
the module when s/he starts walking. During the leader’s entire
walking period, FOLLOWME records the readings of the magne-
tometer, accelerometer, gyroscope, and barometer. The module
then launches a series of signal processing, including magnetic data
preprocessing (Section 5.2), step recognition (Section 6.1), turn and
level-change detection (Section 6.2 and Section 6.3), and generates
a reference trace after the leader’s arrival at the destination. The

reference trace contains timestamped preprocessed geomagnetic
data as well as steps, turns and level changes extracted from
different sensors.

Note that we can also leverage combinations of sensors other
than those listed in Figure 1 for walking pattern recognition. For
example, together with a barometer, an accelerometer can help
detect whether or not the user is climbing stairs [20]. Due to
space limitation, here we focus on the design of the navigation
module and briefly mention the implementation of recognition and
detection algorithms in Section 6.

Navigation Module: This module takes the reference trace as an
input and helps the followers navigate from the starting location
to the same destination as the leader. Typical starting locations
are those where GPS/Google Map stops provision of precise
navigation, such as the end of a road or the entrance of a building.
Like the trace-collection module, it contains a mag-processor
and step detector that process the data from magnetometer and
accelerometer, respectively, during the follower’s walking trip.
All the input data are sent to the walking progress estimator
(Section 5.2), which estimates the portion the user has walked
relative to the entire reference trace. Based on the estimation
results, a deviation detector determines whether or not the follower
is off course. If not, the navigation module provides navigation
directions (i.e., turn, go up/down stairs) on the smartphone screen
to guide the user to the destination, or reversely guides the user
back to the correct trace and then to the destination.

3.2 A Navigation Example

(a) The 3rd floor. (b) The 4th floor.

Figure 2: An indoor navigation example.

For example, suppose a meeting will be held in Room 4941
on the fourth floor of our Department building, and Ua is the
coordinator of this meeting. Before the meeting, Ua walks from the
building entrance (location A on the third floor) to the conference
room as the red arrowed line shows. During the leader’s walk,
the trace-collection module records the geomagnetic data along the
route and identifies walking features (i.e., 1 flight of stairs and 3 left
turns). Later, a meeting participant (follower) Ub, who has received
the reference trace from Ua, arrives at the same entrance. From
that point on, the navigation module will estimate Ub’s location
relative to the reference trace (i.e., walking progress) in real time
and guide Ub to Room 4941. The walking progress estimation is
made by matching geomagnetic observations of Ub to those from
the reference trace. Based on the estimation result, a “go upstairs"
icon will appear first, followed by a “left turn" icon when Ub is
approaching locations B, C and D. Once Ub reaches location E,
FOLLOWME generates a notification and terminates the navigation
process.

Figure 3 shows how the navigation module works in the time
domain. Suppose Ua takes t1 seconds to arrive at position B

Detected a left turn

Timet1 t'1

Notify the user to turn left

Reference

Trace

User

Trace

G
e
o

m
ag

n
e
ti

c
 v

a
lu

e

Figure 3: Illustration of the walking progress estimation.

on the path and makes a left turn during the trace collection.
In the navigation phase, based on the similarity of geomagnetic
observations (in both ellipses), the navigation module infers that
Ub reaches B at time t′1, and hence instructs Ub to turn left.
In Section 4, we first introduce the reference trace construction and
then elaborate on the navigation module in Section 5.

3.3 Assumptions and Limitations
As illustrated with the above example, FOLLOWME has a very

different operational model from most existing navigation systems.
Instead of enabling generic navigation, FOLLOWME is built as
a plug-and-play system for dedicated working scenarios, which
inevitably introduces several limitations. First, the user cannot
be navigated without a reference trace with the same origin and
destination. This may in turn cause a scalability problem as the
number of possible routes inside a building could be very large. In
this part of the paper, we first focus on the design of FOLLOWME,
and discuss the scalability issue in Section 8.2. Second, due to the
unavailability of map information, the user, if deviated from the
reference route, has to return to the route while using FOLLOWME.
Even though it is annoying in certain circumstances, the novelty
of this mechanism is to enable navigation without expensive map
building and localization. In addition, FOLLOWME has some
other specific requirements, e.g., the algorithm requires that the
difference between the number of steps taken by the leader and the
follower be relatively stable. In situations where such constraints
are not met, the performance and accuracy of FOLLOWME is
likely to be adversely affected. This is described in more detail
in Section 5.2. In Section 8, we will discuss future potential
improvements based on our evaluation results.

4. REFERENCE-TRACE CONSTRUCTION
We now describe the reference-trace construction and then

introduce the geomagnetic data processing and real-time navigation
in Section 5. Section 6 will detail the design of algorithms for step
recognition as well as turn and level-change detection.

Table 1: Data format of the reference trace
Geomagnetic data m =< ti,m

x
i ,m

y
i ,m

z
i >

Step data s =< ti, si >, si = 1, 2, 3, . . .
Turn data tr =< ti, tri >, tri = turn degrees

Level change data l =< ti, li >, li = {up, down}

During the leader’s walking, the trace-collection module auto-
matically builds the reference trace by (i) recording geomagnetic
readings, which are tuples of timestamps and magnetic values; (ii)
detecting steps, turns and level-changes based on readings of the
accelerometer, gyroscope and barometer; (iii) outputting all detec-
tion results (time-stamps, turn directions, etc.) and geomagnetic

readings to a file upon leader’s arrival at the destination. The
data format of the reference trace is summarized in Table 1. Each
reference trace is labeled with a (starting point, destination) pair
(e.g., from Entrance A to Room 4941). Once the reference trace is
generated, the leader can share it on the cloud for future navigation
purposes. In the current FOLLOWME implementation, we send the
trace file directly to the followers, but it can be deployed as a cloud
service in future.

Note that there could be certain detection delays during use
of FOLLOWME. For example, a peak detection algorithm will
incur a step detection delay; turns can only be recognized after
the user completes each turn and the response time of level-change
detection is subject to the user’s climbing speed of the staircase.
However, since each step and turn lasts for a short time and the
level-change detection works only in the trace-collection module,
these delays affect the navigation performance insignificantly,
which is confirmed by our experimental study.

5. REAL-TIME NAVIGATION
Since followers will likely walk at different speeds from the

leader, and may even stop en route from time to time, the key
challenge in FOLLOWME is to estimate their walking progress. In
the navigation phase, the walking progress estimator synchronizes
each follower’s walking to the reference trace by matching their
geomagnetic observations. Based on the estimation results, real-
time guidance (i.e., advance notices of turns and level-changes)
and an estimated walking time are also provided on the smartphone
screen. Section 5.3 further discusses on how FOLLOWME recovers
when the user goes off the trail.

5.1 Preliminaries of the Geomagnetic Field
Below we discuss the identified properties of magnetic fields

before presenting a walking progress estimation algorithm.

Locally Disturbed Yet Stable Magnetic Field: Due to its
global availability and stability, the geomagnetic field is used in
several indoor localization systems [13–15, 21–23]. Most of them
exploit magnetic field anomalies caused by the local disturbances
of ferromagnetic building materials, and localize users/devices
based on a pre-established fingerprint map.

0 20 40 60 80 100

10

30

50

70

Time (s)

M
a

g
n

it
u

d
e

 (
µ

T
)

Fast, Oct. 6

Slow, Dec. 2

(a) Collected during walk on an
indoor corridor.

0 20 40 60 80 100

10

30

50

70

Time (s)

M
a

g
n

it
u

d
e

 (
µ

T
)

Fast, Oct. 6
Slow, Dec. 2

(b) Collected during walk on
an outdoor walking trail. The
user passes a building 5m away
between 10s and 40s.

Figure 4: Geomagnetic traces collected during walking.

Figure 4 shows 4 magnetic traces in both indoor and outdoor
environments. The traces in each figure were collected during
walks along the same path on different dates nearly two months
apart. Figure 4 shows that anomalies of the geomagnetic field
caused by building construction materials exist in both indoor and
outdoor environments and that the magnetic field and the local
disturbances are very stable over time as the construction layout

remains unchanged. In addition, the impact of mobile objects on
the magnetic field is very limited. See [13, 24–27] for more detail.
These local disturbances, stability over time and robustness make
the magnetic field a good candidate for trace synchronization in
FOLLOWME.

Note that although the magnetic field is directional and 3D
magnetic signals are measured by magnetometer, it is difficult to
fully leverage magnetic field readings on three axes, as the frame
of reference of the magnetometer may not always align with the
global coordinate system. Ensuring that alignment would require
either accurately tracking the device’s attitude (i.e., orientation or
posture) at all times or to constrain the device usage at some fixed
attitude (e.g., hand-held horizontally with Y-axis towards heading
direction). The former is difficult due to sensor drift and the latter
greatly affects users’ experiences. Therefore, only the magnitude
of the magnetic signal may be used in practice.

0 20 40 60 80 100

10

20

30

40

50

60

70

Time (s)
M

a
g

n
it
u

d
e

 (
µ

T
)

Samsung Note 2

Samsung Galaxy S5

Samsung Galaxy S4

Samsung Galaxy S3

(a) Device diversity

0 20 40 60 80 100
0

20

40

60

80

100

Time (s)

M
a

g
n

it
u

d
e

 (
µ

T
)

Hold in hand

Put in the pant pocket

Hold with arms hanging at the sides

(b) Usage diversity

Figure 5: Challenges of using the geomagnetic field.

Outdoor Low Discernibility and Biased Measurements Due to
Device and Usage Diversities: Despite its favorable properties,
use of the magnetic field poses several challenges. First, the
magnetic field is less interfered in outdoor space than indoor space.
For example, in Figure 4(b), outdoor magnetic distortions can
only be observed when the user passes by buildings. To handle
this problem, FOLLOWME uses a simplified IODetector [16] (only
using the magnetism detector) to differentiate outdoor open areas
from indoor/semi-outdoor spaces. In indoor or semi-outdoor
environments, FOLLOWME leverages a novel step-constrained
trace synchronization approach for navigation, while in outdoor
open spaces where accurate directions can be obtained by a
compass, it uses legacy inertial-sensor-based tracking (i.e., dead
reckoning) [1]. Since the majority of last-mile navigation problems
occur in indoor/semi-outdoor environments, we will focus on the
magnetic-field-based, step-constrained trace synchronization.

The second challenge is the biased magnetic field measurements
caused by device and usage diversities. In other words, different
devices will show different readings for the same magnetic

field. This is verified in Figure 5(a), showing the magnitude
of the collected magnetic signals along the same path using
different smartphones. Even for the same device (Galaxy S5),
the resulting signal varies from the device’s height (as shown
in Figure 5(b)). However, the trend (i.e., shape) of the measured
magnetic field remains consistent across devices and usages,
providing opportunities for navigation.

5.2 Walking Progress Estimation
To provide real-time navigation instructions (i.e., for turns, stair-

climbing) and estimate the remaining walking time, we need to
know how far the follower has walked relative to the length
of the reference trace. For this, we devise a step-constrained
trace synchronization algorithm based on Dynamic Time Warping
(DTW). The algorithm matches magnetometer readings from the
follower’s phone to the pre-loaded magnetic field data from the
reference trace.

DTW is a class of algorithms proposed to align and measure
the similarity between two time series. Specifically, DTW matches
each sample in one time series to one or more samples in another
ordered sequence using dynamic programming. The objective of
DTW can be stated as: Given two time series Sa = Sa[i], i =
1, . . . , La and Sb = Sb[i], i = 1, . . . , Lb, DTW aims to find a
monotonic mapping function f : I[1, La] → I[1, Lb] between Sa

and Sb so as to minimize
∑La

i=1(Sa[i]− Sb[f(i)])
2 where I[1, La]

is the integers from 1 to La.
Despite its wide usage, DTW cannot be directly applied to

synchronize the user and the reference traces for three reasons.
First, DTW works offline on two given time series. However, in
FOLLOWME, the length of the user trace continuously increases
during his walk. Second, DTW maintains a two-dimensional
warping cost matrix of which the size is a quadratic function
of the number of samples. This incurs an unacceptably high
computational overhead on the smartphone, especially when the
walking distance gets longer. Third, DTW compares two sequences
based on their absolute values. Due to the device and usage
diversities, the observations of biased magnetic fields have negative
effects on the matching results. Due to the lack of a full picture
of the user trace (especially at the beginning of the walk), simple
mean-removal techniques cannot solve the problem.

0 1 3 4

v

u

0
2

Figure 6: Updating the warping cost matrix in the step-
constrained trace synchronization.

To exploit the advantages of the magnetic field and deal with
the above problems, FOLLOWME proposes a step-constrained
trace synchronization algorithm. The algorithm has three main
characteristics. First, to deal with device heterogeneity and usage
diversity, we filter out the high-frequency components of the
magnetic field sensing and then utilize the differential magnetic

field information that is independent of the absolute values.
Second, to reduce the computation overhead, we set a global path
constraint in DTW based on the step-detection results. This way,
the algorithm runs in linearithmic time and we need to maintain
similarity scores only within a certain range of the warping cost
matrix, which is also memory-efficient. Third, to obtain a better
matching result, we adaptively change the search band in the
warping cost matrix according to the similarities among traces.

Let us consider Figure 6 as an example to illustrate the matching
process. Figure 6 shows a 3 × 5 warping cost matrix. Entry (i, j)
in the matrix indicates the similarity between the (i− 1)-th sample
in the reference trace v and the (j − 1)-th sample in the user trace
u. In this example we maintain a search band with only a fixed
width of 2, hence setting the path constraint coefficient c = 2. At
the beginning of the process, we compute values of the first c2 = 4
entries on the northwest corner and set the pointer of the matrix p =
(pv, pu) to (1, 1). Then, we find the entry with the minimal value
among all entries that are within the distance of c = 2 to the pointer
on both pv-th row and pu-th column. For example, we find the
entry (1, 1) is smaller than both (1, 0) and (0, 1) entries. Therefore,
both pv and pu increase from 1 to 2 and (1, 2), (2, 1) and (2, 2)
entries are being calculated. Now, we find the entry (1, 2) contains
the smallest value among (2, 1), (2, 2) and (1, 2) entries. Hence, in
the next iteration, only pu increases (i.e., the pointer moves to the
right entry (2, 3)) and we update (2, 3) and (1, 3) entries.

In this example, all calculated entries are shaded in grey, and the
mapped results are also labeled. For example, f(u3) = v2. This
way, we synchronize the walks of the leader and the follower, and
can further provide real-time turning and stair climbing instructions
when the follower approaches a crossing or stairs or elevators.

Note that in this example, we move the matrix pointer p based
only on matching results. A step constraint is also used in our
algorithm. The rationale behind the step-constraint is simple: the
difference between the number of steps taken by the leader and the
follower within a small given physical distance should be bounded.
For example, for a 5-meter walk, it is unlikely that the difference of
steps taken by two users is as large as 10. Hence, in the algorithm,
if f(ui) = vm and f(uj) = vn, we first get the number of steps
s′v taken by the leader between tvm and tvn, and compare it with
the number of steps s′u taken by the follower between tui and tuj .
Since samples (ui, vm) and (uj , vn) should be taken at nearby
physical positions (if not the same), the difference between s′u and
s′v should be bounded. Therefore, if the difference is larger than
a predefined threshold, we move the pointer horizontally/vertically
in the next iteration.

Algorithm 1 and 2 illustrate the detailed step-constrained online
trace synchronization algorithm. At first, Algorithm 1 imports
reference trace v and preprocesses the magnetic field trace mv .
The function MagPreprocess computes the magnitude, smooths
the data through a low-pass filter and calculates the difference
between neighboring magnitude values. The matching continues
running before the user reaches the destination (lines 5–28). In
the main loop, if a new column was calculated (pinc

u == true)
in the previous iteration, the algorithm calculates and outputs the
matching result uv, and then reads a new sample (lines 8–12).
Between line 14 and 27, the algorithm calculates a partial row or
column of the warping cost matrix D (i.e., compare magnetic field
values and compute similarities). The computation is based on
standard DTW recursion formula (line 18 and line 25), restricted
to using only the entries which have already been computed. The
search band is updated in each iteration according to the function
DirInc.

Input : reference trace v = {tv,mv, sv, trv, lv}
Output: uv where uvi = j indicates the i-th sample in u

maps to the j-th sample in v
1 pu = 0, pv = 0, pinc

u = true;
2 for each sample mv

i ∈ mv do
3 mvp

i = MagPreprocess (mv
i);

4 end
5 while pv ≤ size(v) do
6 if pinc

u then
7 uvi = argminD[k][pu], k ∈ [pv − c, pv];
8 for each observation ui do
9 get aui , mu

i ;
10 sui = StepDetection (au);
11 mup

i = MagPreprocess (mu
i);

12 end
13 end
14 if DirInc (pu, pv) != IncColumn then
15 pv ++;
16 pinc

u = false;
17 for j = pu − c; j ≤ pu; j ++ do
18 D[pv][j] = min(D[pv − 1][j − 1], D[pv −

1][j], D[pv][j − 1]) + (mup
pu −m

vp
pv)

2;
19 end
20 end
21 if DirInc (pu, pv) != IncRow then
22 pu ++;
23 pinc

u = true;
24 for j = pu − c; j ≤ pu; j ++ do
25 D[j][pu] = min(D[j − 1][pu − 1], D[j −

1][pu], D[j][pu − 1]) + (mup
pu −m

vp
pv)

2;
26 end
27 end
28 end

Algorithm 1: Magnetic-field-based trace synchronization

To determine the forward direction, function DirInc in Algo-
rithm 2 first checks the step conditions between line 8 and 13.
Specifically, given the current pointer location (pv, pu), we first
extract the last tw-second walk and the corresponding number of
steps taken by the leader. Based on the synchronization results
between traces u and v, we than identify the time taken by
the follower to complete this distance. Finally, we compare the
numbers of steps taken by the leader and the follower (line 8–13).
If vSteps is much less than uSteps, the row number increases
(line 9); if uSteps is much less than vSteps, the column number
increases (line 12). If the step condition is satisfied, the algorithm
sets the forward direction based on the position of the minimal
similarity scores (lines 14–22). If the local minimal cost is achieved
at D[pv][pu], both the row and the column numbers increase. If it
is on the pv-th row, the row number increases, else the column
number increases. In the current implementation of FOLLOWME,
we empirically set tw = 2 and StepBound = 3.

Figure 7 shows a snapshot of the warping cost matrix during
the execution of Algorithm 1. The valley in the center of this
figure (the arrows) is the optimal warping path. We can see that
the algorithm dynamically changes the search band and calculates
entries only within a certain range of the band (i.e., between the
two red lines). To quantify the computational overhead, we ran
the algorithm offline on a PC and Galaxy S5 using traces with
different lengths and record the running time in Table 2. The linear

1 Function DirInc(pu, pv)
2 if i ≤ cIni then
3 return IncBoth;
4 end
5 given uvi = k, calculate
6 vSteps = svk − svk′ where tvk − tvk′ = tw;
7 uSteps = sui − sui′ where uvi′ = k′;
8 if vSteps+ StepBound ≤ uSteps then
9 return IncRow;

10 end
11 if vSteps− StepBound ≥ uSteps then
12 return IncColumn;
13 end
14 (m,n) = argmin(D[x][y]) where

x = pv, y ∈ [pu − c+ 1, pu] or
y = pu, x ∈ [pv − c+ 1, pv];

15 if m < pv then
16 return IncColumn;
17 end
18 if n < pu then
19 return IncRow;
20 else
21 return IncBoth;
22 end
23 end

Algorithm 2: Trace synchronization function

❚�✁✂✄ ✉ ☎✆✝✞✟ ✈

Figure 7: 3D plot of a warping cost matrix.

relation between the trace length and the running time proves the
effectiveness of the algorithm.

Table 2: Computation time (s)
of samples 1000 2000 3000 4000 5000

PC 1.28 4.17 6.96 9.83 12.51
Smartphone 8.21 12.85 18.12 23.29 27.96

5.3 Deviation Detection
In spite of advance notice of turns and level-changes provided

by FOLLOWME, users might still accidentally miss a turn or go
off the user’s trace on purpose (e.g., to see something interesting
along the way). To handle this problem, we design a deviation
detector in FOLLOWME which performs the following tasks. First,
it automatically detects if the user goes off the trail. When

happens, it notifies the user to make a U-turn and navigates him
back to the correct path. Specifically, FOLLOWME replays (in the
reverse direction) turning or stair climbing actions the user took
on the smartphone screen. When to display these instructions is
computed by the walking progress estimator, which synchronizes
the geomagnetic observations before and after the U-turn. Note
that the reverse navigation component can also be used to guide the
user back to a previously visited place. Since the reverse navigation
works the same as the normal forward navigation, in what follows
we will focus on deviation detection.

We detect deviations by tracking similarities of geomagnetic
observations from the reference and the user traces. The rationale
behind this is simple: different paths possess distinct patterns of
geomagnetic intensity. To this end, FOLLOWME keeps monitoring
the warping cost matrix D during the trip and uses the median
absolute deviation (MAD), which is a robust measure of the
variability of a univariate sample of quantitative data, to quantify
the increase of DTW distance.

0 10 20 30 40 50 60 70 80
0

50

Time (s)

M
a

g
.
(u

T
)

Leader trace Follower trace after online alignment

(a) Original traces after alignment

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

Sample

D
T

W
 D

is
ta

n
c
e

(b) DTW distance

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

Sample

M
A

D

(c) MAD of the DTW distance

Figure 8: Deviation detection.

Take Figure 8 as an example. The user deviated from the correct
path after walking for 35 seconds. From Figure 8(a), we can clearly
see the difference between the two traces even after time warping.
Further, in Figure 8(b), the DTW distance is shown to increase
significantly after 1800 samples (i.e., 35 seconds with a sampling
frequency of 50Hz). Based on DTW distance, MAD is calculated
using a window of 50 samples (Figure 8(c)). Deviation is detected
if the cumulative MAD within a certain period grows above a
certain threshold. In the current implementation of FOLLOWME,
we set the length of this period to 5 seconds and the threshold to
the cumulative MAD within a prior neighboring time window.

6. IMPLEMENTATION
To illustrate the application of FOLLOWME, we build a reference

system on the Android platform and implement both the trace-
collection module and the navigation module. In this section,
we first briefly describe the implementation of step, turn, and
level-change detections, and then introduce the implementation of

online navigation in Section 6.4. Note that other motion-detection
techniques can also be leveraged in FOLLOWME.

6.1 Step Detection
Step information of both the leader and the follower is used in

the walking progress estimator (in Section 5.2) to navigate users.
FOLLOWME recognizes user steps based on the accelerometer
readings. Since the maximum amplitudes along all 3 axes of the
accelerometer occur when the heel strikes the ground [28], we
devise a peak recognition algorithm to detect these strikes/steps.
To make the step detection independent of the phone’s orientation,
only the magnitude of the 3-axis acceleration reading (i.e., a =√

(a2x + a2y + a2z)) is considered.
The signal magnitudes first pass through a smoothing filter in the

preprocessing step. To extract better the low-band step component,
a low-pass filter is then applied to filter out high-frequency
accelerations caused by the phone’s random movement. The low-
band component of the acceleration magnitude is calculated online
using the following first-order difference equation:

ali = ali−1 + α× (ai − ali−1) (1)

where ai is the i-th original acceleration magnitude and ali is the
value after passing through the low-pass filter. The default value of
α is set to 0.25.

After the low-pass filter, a peak recognition algorithm with
a sliding window is used to detect peaks in the filtered data.
Specifically, ali is recognized as a peak (i.e., a user step) if it is
larger than all samples located in the range of [t(i)− tw/2, t(i) +
tw/2]. Since the user step frequency is in general lower than 3Hz,
the window size tw in the current implementation is set to 0.3s.

20 22 24 26 28 30

0.8

1.6

20 22 24 26 28 30

−0.2

0

0.2

A
c
c
e
le

ra
ti
o
n

20 22 24 26 28 30

−0.2

0

0.2

Time (s)

(a) Hold smartphone horizontally.

20 22 24 26 28 30

0.8

1.6

20 22 24 26 28 30

−0.2

0

0.2

A
c
c
e
le

ra
ti
o
n

20 22 24 26 28 30

−0.2

0

0.2

Time (s)

(b) Hold smartphone in hands.

Figure 9: Data processing for step detection.

Figure 9 shows processed acceleration signals. In both figures,
the first row displays the original acceleration output from the
smartphone, and the smoothed acceleration data and the corre-
sponding low-band component are shown in the second and third
rows, respectively. Recognized peaks are highlighted in the third
row in red dots. In Figure 9 our step detection algorithm is shown
to perform well even when the user swings his arm with the phone
in hand.

6.2 Turn Detection
In outdoor environment, turn information can be extracted

from the electronic compass. However, due to ferromagnetic
interference, reliable direction output cannot be obtained from the
compass in indoor environments. Thus, in indoor environments, we
detect turns by jointly considering signals from the accelerometer
and the gyroscope to exploit their relative strengths: gyroscope
readings can be integrated to produce angle estimates that are
reliable over a short term, whereas the accelerometer suffering
from random vibrations can be trusted over a long term to provide
attitude estimation.

Turn detection is achieved based on the fact that the rotation axis
of the body during a turn is always directed toward the center of the
Earth (i.e., in the direction of gravity). In other words, users as well
as smartphones always rotate around the Z-axis of the local vertical,
local horizontal (LVLH) frame. Since the gyroscope measures the
angular velocities of rotation on each axis of the smartphone’s body
frame, we first determine the attitude of the smartphone using the
value of gravity on 3 axes of the accelerometer on the phone’s body
frame, and then transform the angular velocity from the body frame
to the LVLH frame to determine turns.

In FOLLOWME, we adopt a rotation matrix to describe the
orientation of the smartphone from the LVLH frame to its body
frame.3 Detailed derivations of frame transformation are omitted
due to space limitation. Note that due to the lack of reliable
compass reading, the phone’s attitude is confined to a conical
surface in the LVLH frame and cannot be uniquely identified.
However, without the need for the yaw angle ψ, we are still able to
detect turns because the rotation always happens about the Z-axis
in the LVLH frame. In addition, to avoid the Gimbal Lock problem
[30], we need to be cautious about the rotation sequence of three
axes. As turn detection is independent of Z-axis, a simple solution
is to exchange the X-axis and Y-axis (i.e., change from the right-
hand coordinate system to the left-handed coordinate system) if the
gravity acceleration factor on X-axis is larger than that on Y-axis.
Once the smartphone attitude is obtained, we transform the angular
velocity and compute the amount of rotation via integration.

6.3 Level-Change Detection
Due to its low power and excellent relative accuracy [20, 31],

a barometer is adopted in FOLLOWME for level-change detection.
Figure 10 shows a barometer trace collected during a user’s walk
from the third floor to the second and then climbing up to the fourth
floor. We also record the timestamps when the user starts walking
on the stairs and arrives at a new level as the level-change ground
truth. In this figure, we can clearly see the increase/decrease of the
atmospheric pressure when the altitude changes.

In FOLLOWME, we devise a two-pass bi-directional searching
algorithm to detect level-changes. In this algorithm, we first
smooth each atmospheric pressure data pn by averaging all samples
within the previous 4 seconds (as the dark curve in Figure 10).
The algorithm then traces back to find the maximal difference
3Other techniques such as quaternion rotations can also be
leveraged to determine the phone’s attitude [29].

0 30 60 90 120 150 180

962.5

963

963.5

964

964.5

Time (s)

A
tm

.
P

re
s
s
u
re

 (
h
P

a
)

Raw barometer data

Smoothed barometer data

Level change ground truth

Figure 10: Data processing for level change detection.

between pn and samples collected within the last T0 seconds. If
a gap |pn − pm|, indicating a level change, is greater than the
threshold ptr , we conduct a forward search afterwards to determine
the altitude-changing period.4 The algorithm outputs a value rl that
indicates whether the altitude increases/decrease (rl = −1/1) or
not (rl = 0). Particularly, if less than 5 steps are taken by the user
during the level-change period, we record an elevator up/down. A
sample detection result of level changes is shown above the curves
in Figure 10. In this figure, the dark (blue) area refers to the
duration when the user is walking downstairs, and the light (yellow)
area indicates walking on an upward staircase. From this figure,
we find the detected stair walking periods fit the ground truth well.
More on detection performance will be provided in Section 7.

6.4 Navigation Module
We implement FOLLOWME on a Samsung Galaxy S5 run-

ning Android (version 4.4.2). In both the reference trace-
collection mode and the navigation mode, FOLLOWME runs two
threads: one for sensory data collection (using callback function
onSensorChanged()) and the other to take care of the signal
processing asynchronously. We down-sample the sensor data at
50Hz to reduce the computation overhead of the smartphone. The
reference trace is saved to the internal storage shared between these
two modes. For the walking progress estimator, we set the path
constraint coefficient c = 600 and cIni = 200.

Figure 11 shows the FOLLOWME GUI where navigation instruc-
tions are provided: after loading the reference trace and pressing
the start button, turning instructions are updated on the right of the
screen (the turn icon) during user walk. The follower is allowed
to walk at different speeds and even stop anytime during the walk.
If the follower is required to walk up/down stairs, a staircase icon
shows up on the left of the screen.

7. EVALUATION
We have conducted experiments in a 4-story campus building

with the testing area of 2000m2. A snapshot of the experimental
environment can be seen in Figure 12. Figure 18 also shows
preliminary evaluation results of FOLLOWME in semi-outdoor and
outdoor open spaces.

Five users participated in our evaluation of the performance
of detection of steps, turns, level-changes, and navigation, in-
cluding trace-synchronization accuracy, timeliness of navigation
instructions and deviation-detection performance. To evaluate
the performance of navigation, 10 different reference traces were
generated by randomly selected users who held their phones

4The resolution of vertical distance changes depends on the
threshold value ptr . In our current implementation, we empirically
set ptr = 0.3.

1.2% 1.6% 2.0% 2.4% 2.8% 3.2%
0

0.2

0.4

0.6

0.8

1

Step counting error (%)

C
D

F

FollowMe
S Health

Figure 13: Performance of step detection.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Turn detection error (degree)

C
D

F

Figure 14: Performance of turn detection.

A B C D E
0

4

8

12

16

20

Users

D
e

la
y
 (

s
te

p
s
)

Walk up the stairs
Walk down the stairs

Figure 15: Delay of level-change detection.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Spatial error (m)

C
D

F

FollowMe
Geomagnetism, with PF
WiFi, with PF

Figure 16: CDF of spatial error in naviga-
tion.

A B C D
0

2

4

6

8

10

Users
L

e
a

d
 t

im
e

 (
s
)

CP A CP B CP C CP D

Figure 17: Lead time of navigation instruc-
tions at different checkpoints.

0 3 6 9 12 15
0

0.2

0.4

0.6

0.8

1

Error (m)

C
D

F

Indoor
Semi−outdoor
Outdoor

Figure 18: Tracking error of the walking
progress estimator.

Figure 11: A snapshot of
FOLLOWME.

Figure 12: A snapshot of the
experimental environment.

in front of their bodies. However, we did not impose any
constraints on the phone’s orientation (e.g., holding the phone
horizontally or vertically) during trace collection and navigation.
Although FOLLOWME does not perform level-change detection
in the navigation mode, we recorded data from the barometer,
accelerometer, and gyroscope, and ran detection algorithms offline
for the purpose of evaluation.

7.1 Accuracy of Detection of Steps, Turns,
and Level-Changes

We first evaluate the performance of step, turn, and level-change
detection.

The step-counting errors are shown in Figure 13. We also
compare the error of the pedometer in S Health, a built-in fitness
application in Galaxy S5. The figure shows that FOLLOWME
achieves comparable step-counting to S Health. The error of
FOLLOWME is below 2.2% which indicates the step-counting error
per 100 steps is less than 3 steps. In the navigation module

of FOLLOWME, such a small error can be compensated for by
matching the geomagnetic field features.

The turn-detection results are plotted in Figure 14. Specifically,
we obtained the ground-truth angles of turns on each test path
using the floor plan, and compared them with the turns detected
by the trace collection module. From Figure 14, we find that the
turn-detection component achieves a 90 percentile accuracy of 15◦.
This error is caused by two factors. First, the actual angle of the
user’s turn may not be identical to that of the path. Second, the
accelerometer and gyroscope are susceptible to perturbation which
can also lower accuracies.

Our experiments show 100% accuracy in detecting level-
changes. To examine another detection performance metric,
Figure 15 plots the delay in detecting level-changes. Due to subtle
pressure changes, detection of level-changes took more time than
both step and turn detections. For example, the average delay of
detecting walking downstairs is 12 seconds. Since the level-change
detection works in the trace-collection module, the relative large
delay has little influence on the navigation performance.

7.2 Navigation Performance
Let us consider the real-time navigation performance. We

first recorded the ground truth locations of the leader at different
times in the trace-collection process. During the follower’s
walk, FOLLOWME compared the instantaneous magnetic field
measurements and the data collected by the leader to estimate the
follower’s relative position. This way, we can measure the offset
between the follower’s true locations and the locations obtained
by the matching algorithm. For the purpose of comparison, we
also implemented tracking algorithms using the geomagnetic field
or WiFi as benchmarks [21]. Both approaches take a fingerprint
map and the floor plan as inputs, and use particle filtering (PF)
to continuously estimate the device’s location. Step and turn
detection algorithms in FOLLOWME are also leveraged for particle
movement and weight updating.

Figure 16 plots the spatial errors of navigation systems. This fig-
ure shows that the spatial errors are less than 2.5m in FOLLOWME.
Compared to benchmarks, we find that FOLLOWME outperforms
the WiFi-based tracking and achieves a comparable 80 percentile
tracking accuracy with the geomagnetic-based algorithm. In
addition, the maximal spatial error of FOLLOWME is smaller

than both of the other two approaches. This is because the one-
dimensional trace synchronization intrinsically limits the search
space, thus reducing the estimation error.

Figure 17 examines further the timeliness of navigation in-
structions and plots the lead time of the instructions at different
checkpoints (i.e., crossings and staircases). We find that most
navigation instructions are provided 4 seconds ahead of the action.
However, for the checkpoint (CP) D, the average lead time of the
notification is around 2 seconds, since it is close to a previous turn.

We also conducted experiments in semi-outdoor and outdoor
open spaces to evaluate the navigation performance of FOL-
LOWME. Figure 18 plots the CDF of spatial error in all three
environments. FOLLOWME is shown to perform best in indoor
environments, where 95% of the absolute spatial errors are less
than 2m. However, in outdoor open spaces, only 50% of the errors
are within the range of 5m and the error can be as large as 14m.
This is due mainly to the unobservable geomagnetic anomalies in
outdoor open space.

2 4 6 8 10 12
0

0.5

1

Deviation detection delay (s)

C
D

F

Figure 19: Delay of deviation detection.

We now consider the performance of deviation detection.
Specifically, Figure 19 shows the CDF of detection delay. Figure 19
shows that all deviations were successfully detected in 11 seconds.
In fact, in 60% of cases, it took 7–9 seconds for FOLLOWME to
discover a divergence.

7.3 Energy Consumption
We now evaluate the energy consumption of FOLLOWME. To

measure power consumption, we use a Monsoon Power Monitor
as a power supply for the smartphone and tracks both current and
voltage. During the experiment, we turned off all background
applications as well as extra hardware components, such as WiFi,
GPS, etc.

0 50 100 150 200 250
0

200

400

600

800

1000

Time (s)

C
u

rr
e

n
t

(m
A

)

(a) Current measurement of
navigation.

0 50 100 150 200 250
0

200

400

600

800

1000

1200

Time (s)

C
u

rr
e

n
t

(m
A

)

(b) Current measurement of
trace collection.

Figure 20: Power consumption of FOLLOWME.

Runtime current measurements of FOLLOWME are plotted in
Figure 20. In Figure 20(a), the smartphone is in sleep mode during
the period from 0 to 20s. FOLLOWME began to run at 40s and

loaded the reference trace at around 65s. The navigation module
started at 90s and continued running until 200s. FOLLOWME was
turned off at 220s. In the trace-collection phase, the module started
running at 60s and stopped at 200s, as shown in Figure 20(b).

We compared the energy consumption of FOLLOWME and
Travi-Navi, a vision-based leader–follower indoor navigation sys-
tem [19]. As different smartphones (Samsung Galaxy S4 vs. Galaxy
S2) are used in two tests, we exclude the energy cost of Android
core services, and focused only on incremental energy consumption
(i.e., the range between blue lines) when both navigation systems
began to run.

Figure 20 shows that the runtime currents of FOLLOWME
are 303.4mA and 224.6mA in navigation and trace-collection
phases, respectively. According to the data provided in [19],
FOLLOWME achieved energy savings of nearly 50% (224.6mA
vs. 433.4mA) in the trace-collection phase and of 15% (303.4mA
vs. 349.5mA) in the navigation phase. This is because FOLLOWME
did not use energy-hungry sensors, such as WiFi and the camera,
but instead the lightweight step-constrained trace synchronization
algorithm. FOLLOWME can also offload the data preprocessing to
co-processors to further reduce energy consumption, which is part
of our future work.

8. DISCUSSION AND FUTURE WORK
Although FOLLOWME provides good navigation performance,

there is room for further enhancements. Discussed below are
several practical issues and limitations of the experiments that
warrant further investigation.

8.1 Limitations of the Experiments
Despite the various encouraging results reported in Section 7,

the evaluation of FOLLOWME is still preliminary. First, we
have not thoroughly assessed the impact of temporal and device
diversities on navigation accuracy. Although the step-constrained
trace synchronization algorithm plays an active role in walking
progress estimation with inconsistent walking speeds, it has not
been evaluated systematically for a large group of users (e.g.,
between the elderly and children) and different combinations of
parameters (e.g., tw and StepBound in Algorithm 2).

In addition, we have not fully tested FOLLOWME in less defined
indoor spaces where navigation becomes more challenging. For
example, simple instructions, such as left/right turns, may not be
enough for successful navigation in a large open indoor space.
Users may also have to make a detour if obstacles temporarily
block a path. The first problem can be solved as the turn-detection
algorithm recognizes turns of different angles, and displays the
corresponding arrows on the screen. It imposes the additional
constraints on the user (e.g., the smartphone should be held
horizontally in hand). For the latter case, we can make the
trace synchronization and deviation detection algorithms tolerate
transient deviations. Once the user walks back to the correct path
(e.g., within 10 seconds), the navigation module automatically
discards the detour part, and continues to synchronize the observed
sensory data with the reference trace. The design of a detailed
algorithm for this is part of our future work.

8.2 Open Issues Related to Reference Traces
We summarize some open problems related to the reference

trace, which plays a key role in FOLLOWME.

8.2.1 Scalability
As mentioned in Section 3.3, FOLLOWME is designed as a plug-

and-play system which meets the need for individuals’ navigation.

However, we need to design a more efficient way to store reference
traces when they are large in number and size. For example, we
can divide traces and store only one copy of common segments of
different traces in the database. This way, FOLLOWME is able to
create new traces from scratch by concatenating segments. Besides,
how to combine traces collected at different locations to help create
an indoor fingerprint map is also an interesting subject to pursue.

8.2.2 Quality Control
In current design of FOLLOWME, each reference trace is built

based on a single user’s walking trace. However, no mechanism
has been provided to guarantee the quality of the reference traces.
A reference trace which is averaged over multiple runs will help
improve the navigation performance, although merging traces with
time-varying walking speeds is non-trivial.

8.2.3 Information Privacy
If users are allowed to share reference traces offline in an

uncontrolled manner, FOLLOWME may pose a risk of privacy
leakage to the users and third-party organizations. For example,
some companies might not want anyone to share any information
about their floor plans or indoor sensory data. Therefore, how to
build a safeguard to preserve information privacy is an interesting
issue to explore.

8.3 Mixed Modality with Additional Location-
Specific Features

We exploited the geomagnetic field to synchronize the reference
trace and the follower’s trace. While enjoying the pervasiveness
and stability of geomagnetic field, FOLLOWME faces several en-
suing problems. For example, the weak geomagnetic disturbances
impair the usability of FOLLOWME in outdoor open spaces. In
future, we would like to incorporate more location-specific signals
and build a mixed modality for walking progress estimation. For
example, we can jointly consider the geomagnetic intensity and
GSM/FM signal strength and synchronize multiple traces. In
indoor environments, opportunistically-sensed WiFi can also be
fused with geomagnetic signals. Even for a given specific type of
location feature, we can synchronize multiple traces that have the
same destination, thus automatically determining the user’s starting
point according to their similarities.

9. RELATED WORK
Navigation and localization have been extensively studied in the

area of robotics. By fusing odometer outputs with IMU sensing
results, robots can compute travel distances, perform accurate
localization, and navigate themselves to the desired destination
based on the map information. In several robotic systems,
additional sensing techniques using laser [32], infrared [33], and
camera [34] are also used for ranging and navigation purposes.
However, humans’ locomotion is much more complicated. The
limited sensing capabilities and energy buffer of smartphones also
add difficulties to both localization and navigation.

Numerous localization techniques using smartphones have been
proposed in the area of mobile computing [1, 3, 5–7, 9, 35–
39]. They can be broadly categorized as (i) infrastructure-based
localization such as using GPS, cellular and WiFi signals, or (ii)
infrastructure-independent localization such as Dead Reckoning
(i.e., IMU-tracking). Each of these two types of localization
has its own advantages and disadvantages. GPS can provide
accurate positioning in outdoor open spaces but encounters fading
signals in indoor environments, whereas Dead Reckoning suffers
from cumulative errors and is affected by the smartphone’s usage.

Despite extensive explorations of integrating these approaches, the
lack of map information makes the last-mile navigation a difficult
problem. In FOLLOWME, we exploit ideas from these techniques
(e.g., using IMU to detect steps, turns) as well as several recently-
proposed smartphone services [28, 29] to build a lightweight, plug-
and-play, last-mile navigation system.

Geomagnetic field anomalies are used for localization and
navigation of both robots and smartphones. In [40], the authors
leverage observations of the ambient magnetic field for indoor
localization, but they can handle only simple straight pathways.
Glanzer et al. [41] introduced a pedestrian navigation system with
human motion recognition, although a pre-established magnetic
field map is equipped to correct the severe disturbance of indoor
direction sensing. Magnetic signatures were leveraged in [23]
to identify locations and rooms. Although mobile phones are
used to measure magnetic field intensity, the system relies on
pillars and offers only room-level positioning accuracy. Grand
et al. [22] proposed a lightweight magnetic map construction
method and used an online particle filter to estimate the location
of a handheld device. Similarly, a particle-filtering-based engine
was designed in [21] to localize and track users with a given
geomagnetic fingerprint map. In general, these techniques require
special hardware [13, 24–27] or dense samples of magnetic data to
build a fingerprint map with high training overhead [13, 21, 23, 42].
In contrast, FOLLOWME utilizes the features of geomagnetic field
without customized hardware and avoids the time-consuming map
construction process.

The leader–follower model has been adopted in several existing
navigation systems [17–19, 43]. In [18] and [43], researchers used
customized devices of magnetic sensing to navigate blind people
and autonomous vehicles. In [17], an electronic escort system
was proposed by using crowd encounters information and dead-
reckoning techniques, but it requires pre-deployed audio beacons,
which impairs its usability. Travi-Navi [19], a vision-guided
navigation system, enables a user to easily bootstrap and deploy
indoor navigation services without building the entire localization
system. FOLLOWME is very different from Travi-Navi in several
aspects. First, Travi-Navi uses compute-intensive particle filtering
as the navigation engine. Unlike multiple indoor tracking systems
proposed to use particle filtering, floor plan (e.g., information
of walls) is no longer available to the system and hence cannot
help expedite the convergence of particles. The free movement
of particles in a two-dimensional space intrinsically introduces
difficulties in navigation. To alleviate this problem, Travi-Navi
uses WiFi AP information and has to continuously estimate the
walking stride length. However, the former is known to be time-
varying whereas the latter can be only roughly calculated even
with a known user’s height. On the contrary, FOLLOWME is a
lightweight system that performs matching in a one-dimensional
space based on accurate step detection and ubiquitous geomagnetic
field. Second, FOLLOWME minimizes the constraints imposed on
users by providing wider usage (i.e., in multi-level buildings, semi-
outdoors). On the other hand, guiders in Travi-Navi need to hold
the smartphone vertically and steadily during walking to achieve
a better image quality, and the followers’ intelligence is implicitly
exploited for image recognition.

10. CONCLUSION
In this paper, we present FOLLOWME, a lightweight, plug-and-

play, last-mile navigation system. It guides users by providing
the “scent” left behind by leaders or previous travelers. In
particular, it introduces a novel online magnetic-filed-based trace
synchronization scheme for estimating the user’s walking progress.

FOLLOWME also recognizes natural walking patterns to help re-
duce the computational overhead and to navigate subsequent users.
We have implemented FOLLOWME on Android smartphones,
evaluated it in a four-story campus building. 95% of FOLLOWME’s
spatial errors were found to be 2m or less during navigation and
FOLLOWME saves at least 50% of energy consumption compared
to a benchmark system.

Acknowledgment
This work was done during Yuanchao’s visit to the University
of Michigan, which is supported in part by 973 Program under
grant 2015CB352503 and scholarship funded by China Scholarship
Council. We thank the anonymous reviewers and the shepherd for
their constructive comments and support.

References
[1] Fan Li, Chunshui Zhao, Guanzhong Ding, Jian Gong, Chenxing Liu,

and Feng Zhao. A Reliable and Accurate Indoor Localization Method
Using Phone Inertial Sensors. In ACM UbiComp, 2012.

[2] Moustafa Youssef and Ashok K. Agrawala. The Horus WLAN
Location Determination System. In ACM MobiSys, 2005.

[3] Paramvir Bahl and Venkata N. Padmanabhan. RADAR: An In-
Building RF-Based User Location and Tracking System. In IEEE
INFOCOM, 2000.

[4] Sungro Yoon, Kyunghan Lee, and Injong Rhee. FM-based
Indoor Localization via Automatic Fingerprint DB Construction and
Matching. In ACM MobiSys, 2013.

[5] Krishna Chintalapudi, Anand Padmanabha Iyer, and Venkata N.
Padmanabhan. Indoor Localization without the Pain. In ACM
MobiCom, 2010.

[6] Anshul Rai, Krishna Kant Chintalapudi, Venkata N. Padmanabhan,
and Rijurekha Sen. Zee: Zero-effort Crowdsourcing for Indoor
Localization. In ACM MobiCom, 2012.

[7] Jie Xiong and Kyle Jamieson. ArrayTrack: A Fine-Grained Indoor
Location System. In USENIX NSDI, 2013.

[8] Daniel Turner, Stefan Savage, and Alex C. Snoeren. On the Empirical
Performance of Self-calibrating WiFi Location Systems. In ACM
LCN, pages 76–84, 2011.

[9] Zheng Yang, Chenshu Wu, and Yunhao Liu. Locating in Fingerprint
Space: Wireless Indoor Localization with Little Human Intervention.
In ACM MobiCom, 2012.

[10] Guobin Shen, Zhuo Chen, Peichao Zhang, Thomas Moscibroda, and
Yongguang Zhang. Walkie-Markie: Indoor Pathway Mapping Made
Easy. In USENIX NSDI, 2013.

[11] Liqun Li, Guobin Shen, Chunshui Zhao, Thomas Moscibroda, Jyh-
Han Lin, and Feng Zhao. Experiencing and Handling the Diversity
in Data Density and Environmental Locality in an Indoor Positioning
Service. In ACM MobiCom, 2014.

[12] HKUST. Path Advisor. http://pathadvisor.ust.hk/.

[13] Jaewoo Chung, Matt Donahoe, Chris Schmandt, Ig-Jae Kim, Pedram
Razavai, and Micaela Wiseman. Indoor Location Sensing Using Geo-
magnetism. In ACM MobiSys, 2011.

[14] Binghao Li, Thomas Gallagher, Andrew G Dempster, and Chris
Rizos. How Feasible Is the Use of Magnetic Field Alone for Indoor
Positioning? In IPIN, 2012.

[15] Xiaofan Jiang, Chieh-Jan Mike Liang, Kaifei Chen, Ben Zhang, Jeff
Hsu, Jie Liu, Bin Cao, and Feng Zhao. Design and Evaluation of
a Wireless Magnetic-based Proximity Detection Platform for Indoor
Applications. In ACM IPSN, 2012.

[16] Pengfei Zhou, Yuanqing Zheng, Zhenjiang Li, Mo Li, and Guobin
Shen. IODetector: A Generic Service for Indoor Outdoor Detection.
In ACM SenSys, 2012.

[17] Ionut Constandache, Xuan Bao, Martin Azizyan, and Romit Roy
Choudhury. Did You See Bob?: Human Localization Using Mobile
Phones. In ACM MobiCom, 2010.

[18] Timothy H. Riehle, Shane M. Anderson, Patrick A. Lichter,
Nicholas A. Giudice, Suneel I. Sheikh, Robert J. Knuesel, Daniel T.
Kollmann, and Daniel S. Hedin. Indoor Magnetic Navigation for the
Blind. In IEEE EMBC, 2012.

[19] Yuanqing Zheng, Guobin Shen, Liqun Li, Chunshui Zhao, Mo Li, and
Feng Zhao. Travi-Navi: Self-deployable Indoor Navigation System.
In ACM MobiCom, 2014.

[20] Kartik Muralidharan, Azeem Javed Khan, Archan Misra, Rajesh Kr-
ishna Balan, and Sharad Agarwal. Barometric Phone Sensors – More
Hype than Hope! In ACM HotMobile, 2014.

[21] Yuanchao Shu, Cheng Bo, Guobin Shen, Chunshui Zhao, Liqun
Li, and Feng Zhao. Magicol: Indoor Localization Using Pervasive
Magnetic Field and Opportunistic WiFi Sensing. IEEE Journal on
Selected Areas in Communications, 33(7):1443–1457, July 2015.

[22] E. Le Grand and S. Thrun. 3-axis Magnetic Field Mapping and Fusion
for Indoor Localization. In IEEE Multisensor Fusion and Integration
for Intelligent Systems (MFI), 2012.

[23] B. Gozick, K.P. Subbu, R. Dantu, and T. Maeshiro. Magnetic Maps
for Indoor Navigation. IEEE Transactions on Instrumentation and
Measurement, 60(12):3883–3891, 2011.

[24] Sam Ann Rahok, Yoshihito Shikanai, and Koichi Ozaki. Tra-
jectory Tracking Using Environmental Magnetic Field for Outdoor
Autonomous Mobile Robots. In IEEE/RSJ IROS, 2010.

[25] S. Suksakulchai, S. Thongchai, D. M. Wilkes, and K. Kawamura.
Mobile Robot Localization Using an Electronic Compass for Corridor
Environment. In IEEE ICSMC, 2000.

[26] I. Vallivaara, J. Haverinen, A. Kemppainen, and J Roning.
Simultaneous Localization and Mapping Using Ambient Magnetic
Field. In IEEE Multisensor Fusion and Integration for Intelligent
Systems (MFI), 2010.

[27] S.A. Rahok and O. Koichi. Odometry Correction with Localization
Based on Landmarkless Magnetic Map for Navigation System of
Indoor Mobile Robot. In International Conference on Autonomous
Robots and Agents (ICARA), 2009.

[28] Nirupam Roy, He Wang, and Romit Roy Choudhury. I am a
Smartphone and I Can Tell My User’s Walking Direction. In ACM
MobiSys, 2014.

[29] Pengfei Zhou, Mo Li, and Guobin Shen. Use It Free: Instantly
Knowing Your Phone Attitude. In ACM MobiCom, 2014.

[30] Wikipedia. Gimbal Lock. http://en.wikipedia.org/wiki/Gimbal_lock.

[31] Kartik Sankaran, Minhui Zhu, Xiang Fa Guo, Akkihebbal L. Ananda,
Mun Choon Chan, and Li-Shiuan Peh. Using Mobile Phone
Barometer for Low-power Transportation Context Detection. In ACM
SenSys, 2014.

[32] Shung Han Cho and Sangjin Hong. Map Based Indoor Robot
Navigation and Localization Using Laser Range Finder. In ICARCV,
2010.

[33] A. M. Flynn. Combining Sonar and Infrared Sensors for Mobile Robot
Navigation. Int. J. Rob. Res., 7(6):54–64, December 1988.

[34] Francisco Bonin-Font, Alberto Ortiz, and Gabriel Oliver. Visual
Navigation for Mobile Robots: A Survey. Journal of Intelligent and
Robotic Systems, 53(3):263–296, 2008.

http://pathadvisor.ust.hk/
http://en.wikipedia.org/wiki/Gimbal_lock

[35] Yin Chen, Dimitrios Lymberopoulos, Jie Liu, and Bodhi Priyantha.
FM-based Indoor Localization. In ACM MobiSys, 2012.

[36] Jeongyeup Paek, Kyu-Han Kim, Jatinder Pal Singh, and Ramesh
Govindan. Energy-efficient Positioning for Smartphones Using Cell-
ID Sequence Matching. In ACM MobiSys, 2011.

[37] Ionut Constandache, Romit Roy Choudhury, and Injong Rhee.
Towards Mobile Phone Localization without War-Driving. In IEEE
INFOCOM, 2010.

[38] Qiang Xu, Alexandre Gerber, Zhuoqing Morley Mao, and Jeffrey
Pang. Acculoc: Practical Localization of Performance Measurements
in 3G Networks. In ACM MobiSys, 2011.

[39] Yuanchao Shu, P. Coue, Yinghua Huang, Jiaqi Zhang, Peng Cheng,
and Jiming Chen. Demo: G-Loc: Indoor Localization Leveraging
Gradient-based Fingerprint Map. In IEEE INFOCOM, 2014.

[40] Janne Haverinen and Anssi Kemppainen. A Global Self-localization
Technique Utilizing Local Anomalies of the Ambient Magnetic Field.
In IEEE ICRA, 2009.

[41] G. Glanzer and U. Walder. Self-contained Indoor Pedestrian
Navigation by Means of Human Motion Analysis and Magnetic
Field Mapping. In Workshop on Positioning Navigation and
Communication (WPNC), 2010.

[42] M. Angermann, M. Frassl, M. Doniec, B.J. Julian, and P. Robertson.
Characterization of the Indoor Magnetic Field for Applications in
Localization and Mapping. In IEEE IPIN, 2012.

[43] W. Storms, J. Shockley, and J. Raquet. Magnetic Field Navigation in
an Indoor Environment. In IEEE UPINLBS, 2010.

	Introduction
	Motivation
	System Overview
	System Architecture
	A Navigation Example
	Assumptions and Limitations

	Reference-Trace Construction
	Real-time Navigation
	Preliminaries of the Geomagnetic Field
	Walking Progress Estimation
	Deviation Detection

	Implementation
	Step Detection
	Turn Detection
	Level-Change Detection
	Navigation Module

	Evaluation
	Accuracy of Detection of Steps, Turns, and Level-Changes
	Navigation Performance
	Energy Consumption

	Discussion and Future Work
	Limitations of the Experiments
	Open Issues Related to Reference Traces
	Scalability
	Quality Control
	Information Privacy

	Mixed Modality with Additional Location-Specific Features

	Related Work
	Conclusion

