LAST MILE NAVIGATION USING SMARTPHONES

Yuanchao Shu, Kang G. Shin, Tian He and Jiming Chen

ACM MobiCom Paris, France September 2015

THE ACT OF FINDING THE WAY TO GET TO A PLACE

HISTORY OF NAVIGATION HISTORY OF SPECIAL INSTRUMENTS

English Sextant and chronometer

Arabs Magnetic compass and Kamal

Portuguese and Spanish Mariner's astrolabe and compass

Circumnavigation and mapping

American Satellite navigation system

> Asian Monsoon winds

> > **Polynesian** Motion of stars, waves

MODERN NAVIGATION SYSTEMS WORKING PRINCIPLE

MODERN NAVIGATION SYSTEMS STATE-OF-THE-ART

- Positioning
 - Outdoor: satellite-based, meter-level positioning accuracy.
 - Indoor: WiFi, geomagnetism, IMU, Bluetooth, FM [Youssef'05, Yoon'13, Xiong'13].
- Mapping

- We need a map.

- Satellite mapping, war-driving, floorplan mapping etc.
- Path Planning
 - Extensively studied in robotics and mathematics.

Does this suffice?

LACK OF MAP INFORMATION BOTTLENECK OF NAVIGATION SYSTEMS

Yuanchao Shu • Paris, France • September 10, 2015

LAST MILE NAVIGATION PROBLEM

Navigates one to the vicinity of destination tens of miles away, but fails to find a feasible path from there to final destination

- Plug-and-play
- Lightweight

- Smartphone-based
- Last mile navigation

FollowNe

BASIC IDEA OF FOLLOWME

• Exploits "scents/crumbs" left behind by the previous travelers.

DESIGN Trace Collection & Real-time Navigation

ARCHITECTURE OF FOLLOWME

TECHNICAL DESIGN REFERENCE TRACE CONSTRUCTION

Yuanchao Shu • Paris, France • September 10, 2015

Time

ARCHITECTURE OF FOLLOWME

ARCHITECTURE OF FOLLOWME

A NAVIGATION EXAMPLE

- Step-constrained trace synchronization algorithm
 - Filter out high-freq. mag. and utilize differential info. to handle device and usage diversity
 - Sync. based on legacy dynamic time warping (DTW)

Given $S_a = S_a[i], i = 1, ..., L_a$ and $S_b = S_b[i], i = 1, ..., L_b$, DTW aims to find a monotonic mapping function $f : I[1, L_a] \rightarrow I[1, L_b]$ between S_a and S_b such that minimize: $\sum_{i=1}^{L_a} (S_a[i] - S_b[f(i)])^2$ where $I[1, L_a]$ is the integers from 1 to L_a .

- Step-constrained trace synchronization algorithm
 - Filter out high-freq. mag. and utilize differential info. to handle device and usage diversity
 - Sync. based on legacy dynamic time warping (DTW)
 - Full knowledge of traces
 - Quadratic computational complexity
 - Online DTW with linear computation overhead

Reference trace

 $D[i][j] = \min(D[i-1][j-1], D[i-1][j], D[i][j-1]) + dist(i,j)$

- Step-constrained trace synchronization algorithm
 - Filter out high-freq. mag. and utilize differential info. to handle device and usage diversity
 - Sync. based on legacy dynamic time warping (DTW)
 - Full knowledge of traces
 - Quadratic computational complexity
 - Online DTW with linear computation overhead
 - Step-constrained search space

$$\begin{split} & \text{If} < m_i > \in < s_j > \rightarrow < \widehat{m}_{i'} > \in < \widehat{s}_{j'} > \text{, and } < m_{i_+1} > \in < s_k > \\ & \rightarrow < \widehat{m}_{i''} > \in < \widehat{s}_{j''} > \text{, then } |(\widehat{s}_{j''} - \widehat{s}_{j'}) - (s_k - s_j)| > c \end{split}$$

Dynamically changing search band

- Step-constrained trace synchronization algorithm
 - Filter out high-freq. mag. and utilize differential info. to handle device and usage diversity
 - Sync. based on legacy dynamic time warping (DTW)
 - Full knowledge of traces
 - Quadratic computational complexity
 - Online DTW with linear computation overhead
 - Step-constrained search space

$$\begin{split} & \text{If} < m_i > \in < s_j > \rightarrow < \widehat{m}_{i'} > \in < \widehat{s}_{j'} > \text{, and } < m_{i_+1} > \in < s_k > \\ & \rightarrow < \widehat{m}_{i''} > \in < \widehat{s}_{j''} > \text{, then } |(\widehat{s}_{j''} - \widehat{s}_{j'}) - (s_k - s_j)| > c \end{split}$$

Dynamically changing search band

IMPLEMENTATION AND EVALUATION

Implementation

- Android 4.4.2, Samsung Galaxy S5
- Two threads
 - Data collection : 50Hz
 - Signal processing
- DTW buffer size: 12s (c = 600)
- Evaluation
 - Four-story campus building
 - 5 participants
 - 10 different reference traces

EVALUATION NAVIGATION ACCURACY

CDF of spatial error in navigation

EVALUATION NAVIGATION ACCURACY

Lead time of navigation instructions at different checkpoints

RELATED WORK

Robotics

Special hardware-based nav. [Cho'10, Bonin'08] Complicated humans' locomotion; Limited energy buffer of smartphones.

Geo-magnetic

Anomalies-based local. and nav. [Clanzer'10, Gozik'11, Chung'11, Grand'12], Ubiquitous and stable; Localization-based navigation (map?); Tedious fingerprint collection.

Smartphone

Nav. with or w/o infrastructure [Li'12, Chintalapudi,'10, Rai'12, Xiong"13, Yang'12, Chen'12]

Accumulative error and usage-dependent; Non-universal (e.g., GPS, WiFi); High bootstrap effort of fingerprinting.

Leader-follower

Trace-based nav. [Constandache'10, Riehle'12, Zheng'14] Customized devices (e.g., robots); Infrastructure-dependent (e.g., WiFi, beacons); Constraints imposed on users.

CONCLUDING REMARKS

INFRASTRUCTURE FREE

Cloud-based or Ad-hoc No need of floor plans (maps) WiFi/Bluetooth-independent

HIGH EFFICIENCY

Low-power sensors Low computation Energy efficient MINI. USER INVOLVEMENT Plug-and-play Fast and easy bootstrapping No action required during NAV

More info. and updates FollowNe

THANK YOU

Q&A