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ABSTRACT
Object detection is a fundamental building block of video analytics
applications. While Neural Networks (NNs)-based object detection
models have shown excellent accuracy on benchmark datasets, they
are not well positioned for high-resolution images inference on
resource-constrained edge devices. Common approaches, includ-
ing down-sampling inputs and scaling up neural networks, fall
short of adapting to video content changes and various latency
requirements. This paper presents Remix, a flexible framework for
high-resolution object detection on edge devices. Remix takes as
input a latency budget, and come up with an image partition and
model execution plan which runs off-the-shelf neural networks
on non-uniformly partitioned image blocks. As a result, it maxi-
mizes the overall detection accuracy by allocating various amount
of compute power onto different areas of an image. We evaluate
Remix on public dataset as well as real-world videos collected by
ourselves. Experimental results show that Remix can either improve
the detection accuracy by 18%-120% for a given latency budget, or
achieve up to 8.1× inference speedup with accuracy on par with
the state-of-the-art NNs.
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Figure 1: An illustration of Remix for pedestrian detection in
a 4K image. For the blue block in the middle, an expensive
network is applied due to the high density of objects. Net-
works of medium sizes are used in green blocks. Red blocks
are processed using cheap networks or even skipped.

1 INTRODUCTION
Organizations are deploying cameras at scale for video analytics. For
instance, large camera networks are installed in cities (e.g., London,
Beijing, New York) for public safety and urban planning [1, 5, 71],
and cameras on enterprise campuses (e.g., corporate offices, retail
shops) are used to improve business operations [41] and shopping
experience [11, 54]. In the vast majority of video analytics appli-
cations, object detection plays a pivotal role due to its ability to
identify and localize all objects instances of certain categories in an
image. Driven by advances in machine learning and hardware ac-
celeration, a number of deep convolutional neural network (CNN)-
based object detection techniques have been proposed and with
excellent performance achieved on benchmark datasets [6, 26, 49].

In many video analytics scenarios, video feeds from cameras
are analyzed on edge devices placed on-premise to accommodate
limited network bandwidth and privacy requirements [17, 21, 40, 77,
78]. Edge compute, however, is provisioned with limited resources,
posing significant challenges on running object detection NNs for
live video analytics.

The inherent tension between resources-constrained edge de-
vices and compute-intensive inference workloads is worsened by
the ever-increasing video quality from high resolution cameras.
Prices of high-resolution cameras have been falling off steadily in
recent years. Nowadays people can get a 4K security camera for
less than 100 USD, an order of magnitude cheaper than what was
five years ago [4, 12]. Some consumer devices are even equipped
with 64 mega-pixel high-resolution camera which offers 8K@24FPS
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video capturing ability [10]. To take advantage of the smoother
and more detailed image, object detection networks have to be
designed with a much large capacity (e.g., more convolutional lay-
ers, higher dimension, etc.) to work with high-resolution inputs,
resulting in a prohibitively high latency when running on edge
devices [65, 69, 70, 85].

To fill the gap between the needs of fast and accurate object
detection in high-resolution videos and the limited resources on
edge devices, we present Remix, a flexible framework with tunable
latency of object detection in high-resolution videos. Remix strikes
the balance between edge resources and object detection perfor-
mance by non-uniformly partitioning high-resolution images, and
runs diverse object detection networks selectively in image blocks.
Unlike existing solutions that run one network on image blocks of
equal size [65, 85, 90], Remix uses edge devices’ compute cycles ju-
diciously in areas that tend to be more informative, hence resulting
in a higher overall detection accuracy. Fig. 1 shows an example of
our key idea behind Remix for pedestrian detection in a 4K image.

Design of Remix, however, faces two core technical challenges.
First, the search space of image partition and network selection
is huge, and it is non-trivial to decide an optimal partition plan,
best balancing the trade-off between accuracy and latency. Second,
executing partitions effectively requires the awareness of the varia-
tions of video content, the NNs’ capabilities as well as edge resource
availability, which is unknown and difficult to predict. To cope with
the first issue, Remix learns the long-term spatial distribution of
objects from the history, and builds an efficient resource-accuracy
profiler which estimates object detection performance of various
networks on objects of different sizes. As a result, Remix effectively
reduces the search space by approximately 35 orders of magnitude,
and generates a group of coarse-grained partition plans within 3
minutes for a 4K video feed on an NVIDIA Jetson device [7] (§3.1).
To deal with short-time content variations, Remix features a closed-
loop selective execution module. It takes as input the live image and
coarse-grained partition plans, and leverages previous detection
results as the feedback to dynamically determine which blocks can
be skipped, finding the solution that maximizes detection accuracy
under the latency budget at runtime (§3.2). In summary, the main
contributions are as follows.

• We propose Remix, a flexible high-resolution object detec-
tion framework. Remix makes the best of edge compute
resources and runs off-the-shelf object detection networks
in high-resolution images at a fine-grained level of latency
and accuracy.
• We conduct a measurement study and identify several key
aspects on the design of high-resolution object detection on
edge devices. The adaptive partition and selective execution
module aswell as a series of practical techniques are designed
to efficiently find the best image split plan, handle temporal
variations of video content and run various detection models.
• We implement Remix on a Jetson edge device as well as two
popular mobile system-on-chips (SoCs). Evaluation results
on multiple 4K videos show that Remix achieves 1.7×-8.1×
speedup with an accuracy drop of 0.2% from the state-of-
the-art (SOTA) object detection networks on devices with
different capacities. Compared with SOTA techniques under

Neural Network Variant Backbone Input Size Param.(M) Size (MB)

EfficientDet

D0 EfficientNet-B0 5122 4.14 16.2
D1 EfficientNet-B1 6402 7.07 27.8
D2 EfficientNet-B2 7682 8.79 34.6
D3 EfficientNet-B3 8962 13.3 52.5
D4 EfficientNet-B4 10242 23.0 90.2
D5 EfficientNet-B5 12802 37.4 146.4
D6 EfficientNet-B6 12802 58.8 230.1
D7 EfficientNet-B7 15362 59.0 232.2

RetinaNet

RN-50-640 ResNet-50 6402 51.8 202.7
RN-152-640 ResNet-152 6402 86.4 337.8
RN-50-1024 ResNet-50 10242 52.2 203.9
RN-152-1024 ResNet-152 10242 86.7 339.0

FasterRCNN FRCN-152-1024 ResNet-152 10242 63.2 497
FRCN-ICT-1024 Inception 10242 60.0 476

SSD-MobileNet FPNLite-320 MobileNet V2 3202 29.2 11.4
FPNLite-640 MobileNet V2 6402 30.7 12.1

YOLO V3 YOLO-416 DarkNet-53 4162 62.0 237

Table 1: Selected object detection NNs.

the same latency constraint, Remix obtained 65.3% detection
accuracy improvements on average.

2 MOTIVATIONAL STUDY
Since the majority of object detection networks are designed with
low-resolution inputs (e.g., 416×416 for YOLOv3), common prac-
tices of high-resolution object detection seek to downscale inputs
(e.g., image resizing, partition) or scale up network’s input resolu-
tion [56, 69, 70]. The former could hurt detection accuracy while
the latter results in large networks that take longer to train and will
be much slower to infer. In this section, we quantify the trade-off
through a measurement study, and identify the key opportunities
– in efficiency and accuracy – of adaptive partition and selective
execution.

2.1 Experimental Setup
We conduct the experiments on a typical edge device, Nvidia Jetson
AGX Xavier [7] with TensorFlow [14] being the inference engine.
As listed in Table 1, in total we select 17 object detection NNs based
on five typical backbones: EfficientDet [69, 70], RetinaNet [37, 48],
Faster-RCNN [64], YOLO [63], and SSD-MobileNet [53, 66].

To evaluate detection accuracy on high resolution inputs, we use
the PANDA dataset [9, 74] that contains 555 images and 15 video
sequences captured frommultiple scenes. In total, it contains 15 mil-
lion bounding boxes of persons and vehicles. Considering common
camera and edge compute capability, we resize images and videos
from the original resolution of 26,753×15,052 into 3,840×2,160 (4K),
denoted as PANDA 4K dataset. We fine-tune the NNs using 80% of
the images and use the rest 20% for testing. We use mean averaged
precision (mAP) [6], a widely-used metric in computer vision to
evaluate object detection accuracy. In order to reliably profile infer-
ence latency, we set the power mode of Jetson to MAXN [8], and
execute each NN for 100 times and report the averaged results.

To explore the design space of high-resolution object detection,
we measure the performance of three types of solutions: 1) down-
sampling inputs; 2) up-scaling networks; and 3) uniform partitioning.
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Figure 2: mAP and GPU inference la-
tency of selected NNs on the PANDA 4K
dataset with Jetson.
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Figure 3: mAP and GPU inference la-
tency of uniform partitioning on the
PANDA 4K dataset with Jetson.
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Figure 4: mAP of EfficientDet NNs on ob-
jects of different sizes in the PANDA 4K
dataset.

2.2 Observations
From the measurement results, we make the following four key
observations.
Down-sampling inputs reduces the latency but has a low ac-
curacy. Down-sampling is a widely-used practice that reduces
the resolution of images to match a network’s input size. Fig. 2
shows the mAP and latency of the 17 networks. Clearly, small NNs
are much faster than large ones. For example, SSD-MobileNet and
EfficientDet-D0 have a latency of only 134ms (7.4 FPS) and 57ms
(17.5 FPS) which are 11.7× and 27.7× faster than EfficientDet-D7
(1,579ms), respectively. However, those small networks have an
extremely low mAP, as low as 0.8% for SSD-MobileNet and 1.1% for
EfficientDet-D0. Such a low accuracy is caused by the small size of
objects after down-sampling. For 4K images in the PANDA dataset,
nearly 80% of the objects are larger than 582 pixels. However, when
down sampled to 320×320, the input size of SSD-MobileNet, nearly
half of the objects are smaller than 2.82 pixels, which is way too
small to be detected by existing neural networks1.
Up-scaling networks increases the accuracy but has a high
latency. Up-scaling networks, i.e., building larger NNs or scaling
up existing ones, is another means to deal with high-resolution
images [37, 56, 67, 69, 70, 82]. This approach would help accuracy
but incur significant latency. We use EfficientDet [70], an efficient
network with SOTA detection accuracy as an example. As shown
in Fig. 2, with up-scaled EfficientDet from D0 to D7, the inference
latency increases exponentially. The input size of EfficientDet-D7 is
only 1,536×1,536 (Table 1), but its latency is higher than 2 seconds.
It will be less practical to further scale up EfficientDet to process
4K images, due to the unaffordable high latency on edge devices.
Furthermore, when the inference latency gets dramatically higher,
the accuracy improvement becomes marginal. For instance, D6
has more than 30% inference latency than D5, but the mAP only
improves by less than 0.6%.
Uniform partitioningmay further increase the accuracy but
has an even higher latency. Recent work also seeks to use uni-
form partitioning to divide a large image into equal chunks, and

1Note that even the best mAP achieved by EfficientDet-D7 in Fig. 2 is only 13.9%. It is
because many images in PANDA 4K contain way too many objects (>100) than what
current NNs can detect.

Level Small Medium Large
FG-Level S0 S1 S2 S3 M0 M1 M2 M3 L0 L1 L2 L3
Min Area 0 8 16 24 32 48 64 80 96 128 160 196
Max Area 8 16 24 32 48 64 80 96 128 160 196 ∞
Table 2: Fine-grained (FG) object-size levels and their areas
in Pixel2, e.g., S0 ranges from 02 to 82 pixels.

processes each chunk using the same network [65, 85, 90]. With this
approach, the details of objects are kept and more objects in total
could be detected, thus improving the overall accuracy. We apply
uniform partitioning (UP) strategy with EfficientDet on the PANDA
4K dataset, denoted as UP-D0, UP-D1 etc. As shown in Fig. 3, the
strategy significantly improves the accuracy. UP-D0 achieves an
mAP of 14.3%, more than 13× better compared with EfficientDet-D0,
and it is also higher than the accuracy of EfficientDet-D7 (13.9%).
UP-D6 even achieves an mAP of as high as 27.6%. However, due to
the cost of running NN for each individual chunk, uniform parti-
tioning also leads to a prohibitively high latency, e.g., more than
10s for UP-07 on Jetson.

The accuracy of NNs varies among objects of different sizes.
We also measure the detection accuracy of EfficientDet on objects
of different sizes. To do so, we categorize object sizes into 12 fine-
grained levels from small to large, as shown in Table 2.

Fig. 4 shows the results. Overall, NNs obtain higher detection
accuracy as object size increases. However, the differences diminish
with the increase of object size. For instance, small networks like
EfficientDet-D3 can still obtain 67.9% and 70% mAP on L2 and
L3, while the best mAP achieved by D7 are only 78.3% and 79%,
respectively.

More importantly, marginal accuracy gain from different neu-
ral networks varies significantly across object sizes. Let’s take
EfficientDet-D6 and EfficientDet-D3 as an example. EfficientDet-
D6 has a latency 5.4× higher than D3. If we run EfficientDet-D6
instead of EfficientDet-D3 on L3 objects, we will end up getting
an mAP improvement of approximately 10%, shown in Fig. 4. Al-
ternatively, if we replace D3 with EfficientDet-D6 on S3 and M2
objects, the mAP improvements can be as large as 3.3× and 1.6×,
respectively. Such a diverse marginal gain on objects of various
sizes calls for careful NN selection, which is absent from existing
partitioning-based methods.



ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA Shiqi Jiang, Zhiqi Lin, Yuanchun Li, Yuanchao Shu, Yunxin Liu

Adaptive Partition

Partition Planning

Historical Frames

Oracle 
Model

Object 
Distribution 

Historical Frames

Oracle 
Model

Object 
Distribution 

Perf. 
Estimation 

NN. 
Profiler

Neural Networks Neural Networks Neural Networks 

Selective Execution

BBox 
Merging

BBox 
Merging

Partition Plan Pool

Execution Plan Final Result

Partition Padding

High-Res Input

Partition Selection

Plan Controller

Partition Selection

Plan Controller

Execution Latency Feedback

Neural Networks Neural Networks Neural Networks 

Detection Results Feedback

Latency Budget

Figure 5: Remix system overview.

2.3 Opportunities and Challenges
The above observations motivate us to design a new system to
achieve a better trade-off between accuracy and latency for high-
resolution object detection. Specifically, we argue image-partitioning
is a promising approach but existing uniform partitioning misses
two critical opportunities. First, it doesn’t leverage the spatial dis-
tribution of objects. As shown in Fig. 1, objects of interest are often
distributed non-uniformly. A large part of the image does not con-
tain any objects of interest and thus can be ignored to reduce latency
without compromising the accuracy. Second, it doesn’t explore the
selection of diverse NNs. As shown in Fig. 4, NNs have diverse char-
acteristics over different object sizes. Intuitively, for large objects
in sparse scenes, a small and cheap NN should be used to reduce
the latency, while for small objects in crowded scenes, a large and
expensive NN is desired to ensure high accuracy. Fundamentally,
existing uniform partitioning treats every pixel equally by spend-
ing the same amount of computing power on each pixel, which
prevents it from achieving a better accuracy-latency trade-off.

Taking advantage of the above opportunities faces several key
challenges. First, it is non-trivial to decide an ideal partitioning
plan to best balance the trade-off between accuracy and latency
considering multiple factors including partition size, object density
and size, and NN characteristics. Second, we need to consider short-
term content dynamics over long-term object distribution to avoid
missing objects caused by ignored partitions. Third, the system
must be efficient and lightweight to run on resource-limited edge
devices and be flexible to support diverse latency budgets.

To address the challenges, we design Remix to achieve efficient
and flexible high-resolution object detection with tunable latency.
The key techniques in Remix are adaptive partitioning that gen-
erates partition plans to maximize the accuracy within a latency
budget through non-uniform partitioning; and selective execution
that deals with short-term content dynamics and runs a partition
plan efficiently. Next, we describe how Remix system works in
detail.

3 REMIX: SYSTEM DESIGN
Remix aims to run diverse NNs with different execution priorities
in different parts of a high-resolution image, so as to maximize the
overall detection accuracy within resource and latency constraints.

To do so, it solves two critical problems, 1) how to effectively parti-
tion the input image, and 2) how to efficiently process each parti-
tion. Fig. 5 depicts the design of Remix, where we address these two
problems with an adaptive partition module (§3.1) and a selective
execution module (§3.2).

The adaptive partition module is designed to obtain a set of ef-
fective partition plans. The inputs of this module include a set of
candidate NNs, historical frames, and a latency budget set by the
user. Remix first obtains the characteristics of the candidate NNs in
terms of latency and detection accuracy on objects of different sizes
through profiling (§3.1.1). Historical frames are used to extract the
object distribution in the input (§3.1.2). Based on the network char-
acteristics and the object distribution, we can enumerate possible
partition plans and quickly estimate their detection accuracy and
inference latency, without actually executing them (§3.1.3). Finally,
Remix builds a partition plan pool by selecting plans with estimated
latency close to the budget while achieving high estimated accuracy
(§3.1.4).

Partition plan pool is fed into the selective execution module.
Initially the selective execution module picks the partition plan
which has the best accuracy within the latency budget. According
to the selected plan, the high-resolution input is split into blocks,
and each block is assigned to a network for inference. Instead of
processing all blocks, a subset of them might be skipped if there
exists no object. We leverage the previous detection results as the
feedback to dynamically determine which blocks can be skipped
in the current frame (§3.2.1). Note that skipping leads to a latency
strictly lower than the one set by user. As such, Remix adjusts the
partition strategy on-the-fly by switching to another plan in the
plan pool every a few frames, until the utilization is maximized
(§3.2.3). Finally, per-block detection results are merged to produce
the whole-image prediction (§3.2.4).

3.1 Adaptive Partition
Given a set of available networks 𝑁 , the historical frames𝐻 and the
latency budget𝑇 , the goal of this module is to find the partition plan
^, which maximizes the detection accuracy within 𝑇 , based on the
understanding of networks’ characteristics and object distribution.



Flexible High-resolution Object Detection on Edge Devices with Tunable Latency ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA

3.1.1 Neural network profiling. We firstly profile the char-
acteristics of available networks, more specifically, their latency-
accuracy trade-off on different sizes of objects. The profiling process
is a one-time effort and we can run it in the offline phase.

Profiling networks’ inference latency is straightforward. The
latency is almost consistent between runs. Thus, we execute the
networks on the target device multiple times using different batch
sizes. For each network 𝑛 ∈ 𝑁 , we obtain its averaged latency 𝐿𝑏𝑛
where 𝑏 is the batch size.

In terms of accuracy, we evaluate NNs on objects with different
sizes defined in Table 2. For each network 𝑛 ∈ 𝑁 , we obtain a
capability vector 𝐴𝑃𝑛 ,

𝐴𝑃𝑛 = ⟨𝜏𝑆0, 𝜏𝑆1, · · · 𝜏𝑀0, 𝜏𝑀1, · · · 𝜏𝐿2, 𝜏𝐿3⟩, (1)

where 𝜏 is the detection accuracy at a particular object size level.
Note that 𝐴𝑃𝑛 can be obtained using existing public datasets

rather than the real data captured by the targeted device.We useMS-
COCO dataset [6] in our implementation. Although the obtained
𝐴𝑃𝑛 may differ from real data, the relative performance differences
between networks are usually consistent (more details are discussed
in §4.3.2). We only leverage these relative differences to guide Remix
to choose proper networks.

3.1.2 Object distribution extraction. In common object de-
tection applications, e.g., smart surveillance, cameras are usually
stationary in the fixed angle and position. Thus, we have two obser-
vations: 1) for one category of objects, their visible sizes are often
similar over time when they are on close positions of the captured
view; 2) common objects, e.g., pedestrians and vehicles, trend to
appear in certain regions of the captured view. Based on these two
observations, we leverage historical frames to learn the distribution
of object sizes. Given the captured view𝑉 from the targeted camera,
we calculate the distribution vector 𝐹𝑉 ,

𝐹𝑉 = ⟨𝜙𝑆0, 𝜙𝑆1, · · ·𝜙𝑀0, 𝜙𝑀1, · · ·𝜙𝐿2, 𝜙𝐿3⟩, (2)

where 𝜙 is the distribution probability of objects on each size level
described in Table 2.

For any divided block 𝑝 in𝑉 , we can also get its distribution vec-
tor 𝐹𝑝 , by counting corresponding objects whose bounding boxes
centroids are in 𝑝 .

Ideally, the distribution vector 𝐹𝑉 should be obtained from the
ground truth of historical frames 𝐻 . However, it is not practical to
manually label the large amount of frames. Therefore, we use an
oracle model to do the labeling, which is a widely-used approach in
existing work [86, 87]. The oracle model should be as accurate as
possible. We use a modified UP-D7 as the oracle model as detailed in
§4.1.1, and our evaluation shows that the end-to-end performance
using the ground truth and using the detection results of the oracle
model are very close (§4.3.1).

3.1.3 Performance estimation. In order to find a proper net-
work for a certain part, we need to compare the performance of
available NNs. Obviously, it is too time-consuming to execute every
network on every possible part. Therefore, we propose to quickly
estimate the performance without actually executing the particular
network, based on the outputs of techniques above.

Given a network𝑛 ∈ 𝑁 and a block 𝑝 ∈ 𝑉 , the detection accuracy
of 𝑛 on 𝑝 mainly depends on two factors: 1) the capability of 𝑛,

Algorithm 1: Adaptive Partition Planning
1 function adaptive_partition(𝑉 , 𝐻 , 𝑁 ,𝐴𝑃𝑁 )

Input :
• 𝑉 : The coordinates of processed view.
• 𝐻 : The historical frames.
• 𝑁 : The set of candidate networks.
• 𝐴𝑃𝑁 : The capacity vectors of 𝑁 .

Output :
• 𝐾 : The obtained partition plans.

2 foreach network 𝑛 ∈ 𝑁 do
3 𝐿1𝑛 ← the inference latency of 𝑛 with 1 as the batch size;
4 𝛾 ← scale ratio of the input size of 𝑛 to the resolution of𝑉 ;
5 𝐻𝛾 ← scale down objects in 𝐻 according to 𝛾 ;
6 𝑓 ← calculate the distribution vector according to 𝐻𝛾 ;
7 𝑒𝐴𝑃𝑛a ← estimate_AP(𝑓 ,𝐴𝑃𝑛) ;
8 ^ ← ⟨V, 𝑛⟩, 𝑒𝐴𝑃𝑛a , 𝐿1𝑛 ;
9 insert ^ into 𝐾 ;

10 prune redundant plans in 𝐾 ;
11 foreach network 𝑛 ∈ 𝑁 do
12 𝑃 ← uniformly partition𝑉 by the size of 𝑛 ;
13 Initialize 𝑡𝑚𝑝 ;
14 foreach divided block 𝑝 ∈ 𝑃 do
15 𝑁𝑠 ← networks which are smaller than 𝑛 ;
16 𝐻𝑝 ← objects located at 𝑝 ;
17 𝑆𝐾𝑝 ← adaptive_partition(𝑝 , 𝐻𝑝 , 𝑁𝑠 ,𝐴𝑃𝑁𝑠 ) ;
18 permute and combine 𝑆𝐾𝑝 with 𝑡𝑚𝑝 ;
19 prune redundant plans in 𝑡𝑚𝑝 ;
20 insert 𝑡𝑚𝑝 into 𝐾 ;
21 prune redundant plans in 𝐾 ;
22 return K ;

specifically its detection accuracy on different object sizes; 2) the
object distribution in 𝑝 , specifically the density of objects in 𝑝 and
their visible sizes.

As discussed above, we can use the capability vector 𝐴𝑃𝑛 to
represent the capability of 𝑛, and use the distribution vector 𝐹𝑝
to describe the object distribution in 𝑝 . Therefore, we can quickly
estimate the detection accuracy 𝑒𝐴𝑃 by 𝐴𝑃𝑛 and 𝐹𝑝 ,

𝑒𝐴𝑃𝑛𝑝 = 𝐴𝑃𝑛 · 𝐹𝑝 , (3)

According to a partition plan ^, the captured view is divided
into several blocks 𝑝 . Now we can estimate the overall detection
accuracy applying ^ on the whole view 𝑉 , 𝑒𝐴𝑃^

𝑉
by combining all

the estimations of every 𝑝 ,

𝑒𝐴𝑃^𝑉 =
∑

𝑒𝐴𝑃𝑛𝑝 · _𝑝 , 𝑝 ∈ 𝑉 , (4)

where _𝑝 is the object density of 𝑝 relative to the whole view 𝑉 .
Estimating the inference latency of a partition plan is straightfor-

ward. We sum the latency of all the divided blocks 𝑝 . Some blocks
might be assigned by the same network, then we can execute them
in batch. Thus, we estimate the inference latency 𝑒𝐿𝑎𝑡^ ,

𝑒𝐿𝑎𝑡^ =
∑

𝐿𝑏𝑛, 𝑛 ∈ 𝑁^ , (5)

where 𝑁^ is the set of networks used in ^. The proposed perfor-
mance estimation approach is robust. We evaluate the approach on
the PANDA 4K dataset to compare our estimations with the actual
measured mAP and latency of different partition plans. The results
show the strong correlation (>0.6) and little bias (<5%) for estimated
detection accuracy and latency, respectively. More evaluation de-
tails would be presented in §4.3.2.
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(a) Adaptive partition. (b) Partition padding. (c) Partition selection. (d) Plan control.

Figure 6: Example of partition plans obtained by Remix on PANDA 4K dataset.

3.1.4 Partition planning. The goal of partition planning to find
a set of candidate partition plans 𝐾 with high 𝑒𝐴𝑃 and 𝑒𝐿𝑎𝑡 close
to the latency budget 𝑇 . A partition plan ^ that is actually used to
process the input is dynamically chosen from 𝐾 at runtime.

We apply a dynamic programming based algorithm to find such
𝐾 . Intuitively, the algorithm enumerates every possible partition
plan and estimates their detection accuracy and latency. Algorithm 1
shows the pseudo code.

For the capture view of a camera, the algorithm takes its histori-
cal frames𝐻 and capability vector𝐴𝑃𝑛 of candidate network 𝑛 ∈ 𝑁
as the inputs. The algorithm counts all the ways to process a given
frame. Firstly, a frame can be down-scaled and processed by a net-
work directly. Thus, for each network 𝑛 ∈ 𝑁 , we calculate the scale
ratio between the size of captured view and the required resolution
of 𝑛 (line 4). Next, we scale objects in 𝐻 accordingly and update
the object distribution vector (line 5-6). Then we can estimate 𝑒𝐿𝑎𝑡
and 𝑒𝐴𝑃 (line 7-8) using Equation 5 and 3, respectively.

A frame can also be split. For each network 𝑛 ∈ 𝑁 , we can use
it divide the frame uniformly (line 10-11). Every divided block in
turn can be processed by this algorithm recursively (line 14-17).
The partition plans obtained from the divided blocks 𝑝 are notated
sub-partition plans 𝑆𝐾𝑝 (line 17). We permute and combine 𝑆𝐾𝑝
of all divided blocks (line 18), and estimate their 𝑒𝐿𝑎𝑡 and 𝑒𝐴𝑃 ,
accordingly. The recursive algorithm would stop until the input
block cannot be divided any more, i.e., the size of the input block is
equal or smaller than the smallest network’s size in 𝑁 .

Enumerating all possible partition plans is time-consuming due
to the huge search space. To decrease the search space, we addi-
tionally adopt a prune-and-search [60] based method. During the
planning, if multiple plans in 𝑆𝐾𝑝 have the close 𝑒𝐿𝑎𝑡 within 1 ms,
only the one with highest 𝑒𝐴𝑃 is kept (line 10, 19, 21). We also set a
cut-off latency threshold, any partition plan would be dropped if its
𝑒𝐿𝑎𝑡 is higher than this threshold. Empirically we set this threshold
to 10 seconds. In this way, the search space can be largely decreased.
For instance, we use seven candidate networks, EfficientDet D0-
D6 to process one 4K video. The search space is decreased from
4.3 × 1038 to around 9, 400 different partition plans with different
latency-accuracy trade-offs.

Among these plans, we first choose the most accurate plan ^0
within the latency budget 𝑇 as a candidate plan. However, ^0’s
latency might be an over-estimation, since the blocks in ^0 will
be selectively executed at runtime, which would be discussed in
§3.2. Thus, we additionally choose several candidate plans with
higher 𝑒𝐿𝑎𝑡 that can potentially better utilize the latency budget.
In particular, we choose partition plans with 𝑒𝐿𝑎𝑡 ranged from𝑇 to
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Figure 7: Object sizes and object centroid positions in Y axis
of the captured view.

1.5𝑇 . An example partition plan is illustrated in Fig. 6(a). Intuitively
we see that for the blocks containing many pedestrians, medium
networks like EfficientDet-D3 are used. While lightweight D0 is
assigned to the blocks with few or large objects that are easy to
detect.

3.1.5 Partition padding. One problem of partitioning high res-
olution inputs is that it might cut apart the objects around the
boundary, leading to detection failures. To cope with it, a straight-
forward method is to add overlaps between divided blocks, which
introduces the overhead of redundant partitions and higher latency.
To minimize the overhead, we propose to adaptively add minimal
margins to each divided block. The minimal vertical and horizontal
margin sizes can be determined by the potential object’s height and
width, which happens to locate at the boarder of this block.

Based on the perspective effect, for one category of objects, its
visible height and width in pixel is linearly related to its position
on vertical axis. Therefore, we can apply the linear regression to
predict an object’s height and width using its position. Fig. 7 shows
an example of such the linear relationship where pedestrians are
detected in the PANDA 4K dataset. We leverage the historical detec-
tion results to obtain such linear relationships. Based on that, we can
add the minimal necessary margin to each divided block. Fig. 6(b)
demonstrates a padded partition plan. Every block in Fig. 6(a) is
padded by a margin to include the potential pedestrians nearby suc-
cessfully. Since the margins are often a few pixels, we use the same
network to process the padded blocks, which introduces almost
zero overhead.

3.1.6 Bootstrap and update. In order to obtain effective parti-
tion plans, the networks’ characteristics and the object distributions
should be profiled. Thus, Remix needs a bootstrap stage when de-
ploying. The NNs profiling is an one-time process. To obtain the
object distribution, several frames are required. Our evaluation
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(§4.3.1) shows that only a very little amount of frames are enough
to generate qualified partition plans.

We also notice that object distributions might vary over time.
Therefore, inRemixwe update the object distribution and re-generate
partition plans accordingly. The adaptive partition module is light-
weight. It can run on the cloud or on edge devices directly. Ac-
cording to our measurements, the whole update process only costs
around 6 minutes in total, to analyze enough historical frames (<
4 minutes) and generate partition plans (< 3 minutes) on a Jetson
edge device. Currently we do not detect the semantic changes of
scenes and automatically trigger the update, which is handled by
users empirically. We would take the automatic update as future
work.

3.2 Selective Execution
The generated partition plan pool is then used in the selective exe-
cution module. To further deal with the video dynamics at runtime,
this module has the following two objectives. 1) Given a sequence
of video frame 𝐼 from the captured view𝑉 and the chosen partition
plan ^ , the module determines which blocks 𝑝 should be executed,
to further speedup the inference. 2) Given multiple partition plans
𝐾 , it dynamically chooses the proper one to make the execution
latency 𝐿 as close as possible to the latency budget 𝑇 , to further
improve the detection accuracy. Accordingly, we propose the fol-
lowing techniques.

3.2.1 Partition selection. Initially, we select the partition plan
^ with the highest 𝑒𝐴𝑃^ while its 𝑒𝐿𝑎𝑡^ is within the latency budget
𝑇 . According to ^ , the high-resolution frame is divided into blocks.
At runtime, some blocks may not contain any target object, e.g., they
are covered by irrelevant background or objects may just disappear
in them temporarily. Compute resources can be saved by skipping
such blocks.

To determine which blocks should be executed, we leverage the
previous detection results as the feedback, and deploy a Exploration-
and-Exploitation [68] strategy. In order to balance between exploit-
ing and exploring, we make Remix work in this manner conser-
vatively. 1) If no objects can be detected in a block for several
inferences, we would skip it in following few frames, to save the
latency. 2) If objects are detected in a block, then this block would
be processed in the next frame, to ensure the detection accuracy.
3) Objects may still appear sometimes in skipped blocks, so we also
try to bring such blocks back, to explore more potential detection.

To achieve this, we introduce a neat yet efficient additive-increase
multiplicative-decrease (AIMD) solution, inspired by TCP conges-
tion control algorithm [16]. In particular, for each divided block 𝑝
we assign a penalty window𝑤𝑝 . The value of𝑤𝑝 represents that
the block 𝑝 would be skipped for the following certain inferences.
Initially𝑤𝑝 is set as 0, hence every block would be executed. Once
the inference is finished, we update𝑤𝑝 by the detection results. 1) If
we cannot detect any object in 𝑝 , we linearly increase𝑤𝑝 according
to𝑤𝑝 = ]𝑝 −1, where ]𝑝 is the consecutive inference times when no
object is detected in 𝑝 . 2) Once objects can be detected in 𝑝 , instead
of multiplicative decrease𝑤𝑝 , we conservatively reset𝑤𝑝 to 0 as
well as ], to ensure 𝑝 be processed in the next inference. 3) If the
block 𝑝 is skipped, we would decrease its𝑤𝑝 by 1 for every skipped

inference. Once its𝑤𝑝 is back to 0, we bring it another opportunity
to infer if objects appear.

Fig. 6(c) demonstrates an example of the partition selection out-
put in run time. The blocks with red masks are skipped. Since we
apply the conservative strategy above, Remix skips blocks that con-
tain no object, leading to significant latency speedup with minimal
accuracy loss.

3.2.2 Batch execution. Next the chosen blocks would be pro-
cessed by the assigned network. There might be multiple blocks
assigned by the same network, and thus we have the opportunity to
execute them in batch, which could speed up the inference further.

3.2.3 Plan control. Since several divided blocksmight be skipped,
the actual inference latency 𝐿 may be lower than the latency bud-
get 𝑇 . It suggests that the system still has the compute power left.
Therefore, we ask if we can fully utilize the latency budget to further
improve the detection accuracy.

To this end, in the adaptive partition module (§3.1), we not only
pick the most accurate partition plan within𝑇 , but some other plans
beyond 𝑇 as well. These plans are heavier, with higher latency
as well as higher expected detection accuracy. We can re-select
another plan from them, letting the actual latency 𝐿 approximate
to 𝑇 . However, it is not easy to select such another plan because
it depends on the video dynamics which blocks are skipped. Thus,
the actual latency 𝐿 is usually time-varying and indeterminate.

To address this issue, we are inspired by the closed-loop control
system. Instead of determining the updated plan at once, we use
the actual latency 𝐿 as the feedback and continuously try different
plans until its 𝐿 approximates 𝑇 . More specifically, we employ a
closed-loop controller. The desired setpoint (SP) of the controller is
set to the latency budget 𝑇 . The measured process variable (PV) is
𝐿 as the feedback. Using SP and PV, the controller would output a
control value 𝑢. In our case, it is the updated budget used to search
plans from the partition plan pool. The most accurate plan within 𝑢
would be selected. In Remix we implement a proportional–integral-
derivative (PID) controller [20]. In each time step 𝑡 , the PID con-
troller calculates an error value 𝑒 (𝑡) as the differences between SP
and PV, and applies the correction based on proportional, integral,
and derivative terms as 𝑢 (𝑡). Each term is associated with coeffi-
cient, 𝐾𝑝 , 𝐾𝑖 and 𝐾𝑑 for the proportional, integral, and derivative
terms, respectively.

We tune parameters manually in offline. Generally, we expect
the controller can make Remix quickly reach SP, meanwhile be
more sensitive and responsive to the disturbances. Therefore, we
set relatively higher 𝐾𝑝 and 𝐾𝑖 . We notice there are several sophis-
ticated tuning methods [18]. We regard the PID parameters tuning
as future work.

Fig. 6(d) illustrates an example of the re-selected partition plan.
Compared with Fig. 6(c), the blocks containing dense objects are
given more compute power by assigning larger networks. Mean-
while its actual latency is closer to the latency budget.

3.2.4 Boundingboxmerging. As the divided blocks are padded,
some objects might be detected repeatedly.Whenmerging detection
results from each block, we apply the non-maximum suppression
(NMS) algorithm [61] to filter out the duplicated bounding boxes.
The threshold of NMS in Remix is set to 0.5.
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(a) Jetson AGX Xavier.
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(b) Snapdragon 855.
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(c) Kirin 970.

Figure 8: mAP and mobile GPU inference latency of Remix on the PANDA 4K dataset with different hardware.

4 EVALUATION
We evaluate the performance of Remix in terms of the inference
latency and the achieved detection accuracy, i.e.,mAPwith different
hardware and under different real scenes. We further take ablation
studies to examine the performance of individual units.

4.1 Experimental Setup
4.1.1 Implementation. We implementRemix on three hardware
platforms with different capacities, a Jetson AGX Xavier [7] and
two additional popular mobile SoCs, Snapdragon 855 [3] and Kirin
970 [2]. Jetson is equipped with one 512-core Nvidia Volta GPU.
On Snapdragon and Kirin, one Adreno 640 and a Mali G72 mobile
GPU are equipped, respectively. We leverage such mobile GPUs
for the inference. For Jetson, Remix uses TensorFlow [14] as the
inference engine, while TensorFlow Lite (TFLite) [15] 2 is used for
Snapdragon and Kirin. We use EfficientDet [70] series as basic net-
work units for partition planning and inference. Specifically, we
use EfficientDet-D0 to D6 on Jetson, and only use EfficientDet D0
to D5 considering the limited capabilities of selected mobile SoCs 3.
We use the uniform partition by Efficient-D7 (UP-D7) as the oracle
model and set overlap ratio to 50% to avoid objects being cut off
during partitioning.

4.1.2 Dataset. We evaluate Remix on the videos of the PANDA
4K dataset (§2). For each scene in the videos, we use the beginning
10% frames as the historical frames to generate partition plans, and
use the remaining 90% for testing.

4.1.3 Baselines. Our baselines include two sets of networks,
1) SOTA EfficientDet and its variants (D0-D7), 2) EfficientDet D0 to
D6 with uniform partition, denoted as UP-D0 to UP-D6. To the best
of our knowledge, EfficientDet achieves the best detection accuracy
on public dataset [6]. We scale down 4K frames to the required
input size of the network before feeding them to each individual
NN. Uniform partition has also been discussed in several recent
studies for detecting objects on high-resolution videos [65, 85].

4.1.4 Latency budget. We design Remix to achieve the best ac-
curacy within a given latency constraint. Different latency budgets
2The inference batch size in TFLite is fixed to 1.
3Note that some operators in EfficientDet are not supported by the mobile GPU we
use. As a result, they fall back onto CPU.

set for Remix lead to varied performance. To fairly compare against
baselines, we adopt multiple latency budgets to show the perfor-
mance of Remix. In our evaluation, we select seven latency budgets,
which are same with the inference latency of selected baselines,
including D4 to D6 and UP-D0 to UP-D3. The selected latency bud-
gets are ranged from 400ms to 3,000ms. We donate them as 𝑇𝐷4 to
𝑇𝐷6 and 𝑇𝑈𝑃0 to 𝑇𝑈𝑃3, respectively.

4.2 Remix Performance
4.2.1 Overall performance. We firstly show the overall perfor-
mance of Remix. Fig. 8 illustrates the performance of Remix as well
as the baselines. Each point on the curves denotes the achieved
averaged mAP with the averaged inference latency for frames of
all scenes.

Remix successfully distinguishes different computation resource
requirements for different regions, and assigns with proper net-
works. Therefore, it can achieve higher detection accuracy. As
shown in Fig. 8(a), on Jetson, under the similar latency, Remix
can achieve relative 18%-70% detection accuracy improvements
relatively compared with the baselines, around 49% on average. For
instance, Efficient-D6 obtains 13% mAP with the latency of about
1,150ms. Remix is able to achieve 20.2% mAP with similar latency
(1,130ms).

Comparedwith Jetson, the selectedmobile SoCs aremore resource-
limited. The large networks such as EfficientDet-D5 show fairly
poor performance. However, with the proposed techniques, Remix
demonstrates significant performance improvements. In particular,
shown in Fig. 8(b), on Snapdragon 855, with the similar latency,
Remix can achieve 85% detection accuracy improvements relatively
on average, compared with the baselines. The averaged detection
accuracy improvement is about 62% relatively on Kirin as illustrated
in Fig. 8(c).

Meanwhile, due to the adaptive partition and selective execution
module, Remix can achieve competitive mAP with much lower
inference latency. As shown in Fig. 8(a), on Jetson when obtaining
similar mAPs (within 0.2%), Remix can achieve up to 5.5 × speedup
compared with baseline approaches. For instance, UP-D4 achieves
approximately 19.5% mAP with a latency of 4700ms. Remix, on the
other hand, is able to obtain 19.3% mAP at a much smaller latency
cost of 850ms. The inference speedups are up to 8.1× and 5.1× on
Snapdragon and Kirin, shown in Fig. 8(b) and 8(c), respectively.
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(a) Scene B: Plaza square. (b) Scene D: Sports ground. (c) Scene E: Street.

TD4 TD5 TD6 TUP0 TUP1 TUP2 TUP3
Latency Budget (ms)

0

20

40

60

80

100

120

140

160

m
AP

 Im
pr

ov
em

en
t (

%
) Scene B

Scene D
Scene E

(d) mAP improvements.

Figure 9: Typical scenes in PANDA and corresponding mAP improvements achieved by Remix.
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Figure 10: End-to-end performance of different partition
plans under various typical latency budgets.

4.2.2 Performance across different scenes. We also examine
the performance improvements achieved by Remix across different
scenes under various latency budgets. Fig. 9 showcases three typical
scenes in the PANDA 4K dataset and their corresponding mAP
improvements. We notice that if the scene doesn’t have clear spatial
structures, the mAP improvement is limited. For instance, Scene
B is a plaza square where objects distribute almost uniformly. The
average relative mAP improvement is only about 31% compared
with the baselines. Conversely, the skewed distribution of object
in Scene D and E helps Remix skip many blocks containing very
few objects and distribute more compute power on more important
blocks, thus leading to a higher mAP. As shown in Fig. 9(b) and
9(c), the mAP improves by 53% and 52% on average compared with
the baselines, respectively.

4.3 Evaluation of Adaptive Partition
Next, we breakdown the system and evaluate each key technique
with Jetson, starting from the adaptive partition module.

4.3.1 Quality of partition plans. We propose to use an oracle
model to replace the manual labeled ground truth, to extract the
object distribution from the historical frames (§3.1.2). Then based
on that, we generate the partition plan pool. We evaluate the oracle
model on the PANDA 4K dataset. It achieves about 29% mAP with
the latency of nearly 12 seconds per frame.

However, a more critical question is how end-to-end perfor-
mance differs between using partition plans generated from the
labeled ground truth and from detections of the oracle model.
Fig. 10(a) answers this question. Leveraging the proposed oracle
model, Remix can achieve a very close detection accuracy to that
of using the ground truth. The differences between them are only
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Figure 11: Bias and correlation between the measured and
estimated latency and mAP.
round 0.1% to 0.7% under various latency budgets. Therefore, we are
confident to use the oracle model to extract the object distribution
and obtain the partition plan pool base on that.

Another interesting question would be howmany history frames
Remix needs to generate qualified partition plans. Thus, we use
different volumes of historical frames to search partition plans
and evaluate corresponding performance under different latency
budgets.

We select three scenes. For each scene we use the first 1, 3, 5, 10,
20 and 30 frames to generate partition plans. Fig. 10(b) illustrates
the averaged detection accuracy of scenes under different latency
budgets. Overall all the plan pools obtain the similar mAP. It also
indicates that a very little amount of historical frames are sufficient
enough to generate qualified plan pools. An interesting observation
is that even we use only one frame to search plans, we also can
get competitive performance. We conclude this as that the object
distribution of the sampled historical data might be often consistent
during the capturing. But we also notice that the object distribution
might be changed, due to external factors, e.g., time and uncertain
events. Thus, how to efficiently sample the typical frames from the
historical data would be future work.

4.3.2 Performance estimation bias. In order to perform the
partition planning without actually executing a network, we in-
troduce the performance estimation module (§3.1.3). To verify our
estimations, we compare the estimated latency and mAP with the
measured values after the executions.

Fig. 11(a) shows the bias between the estimated latency with
the measured latency when using different latency budgets. All
median bias is less than 5%.We also evaluate the estimated detection
accuracy 𝑒𝐴𝑃 . We pick different partition plans and compare their
𝑒𝐴𝑃 and the measured mAP. Fig. 11(b) shows the result, which
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Figure 12: Latency with and
without selective execution
using different budgets.
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Figure 13: Latency with and
without selective execution
in different scenes.
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Figure 14: mAP with and
without selective execution
on PANDA 4K dataset.
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across scenes.

Latency Budget 𝑇𝐷4 𝑇𝐷5 𝑇𝐷6 𝑇𝑈𝑃0 𝑇𝑈𝑃1 𝑇𝑈𝑃2 𝑇𝑈𝑃3
Without padding (%) 10.4 17.4 17.8 17.1 19.0 19.1 20.3
With padding (%) 10.6 18.3 19.2 19.0 20.3 20.3 21.8

Table 3: mAP with and without partition padding.

illustrates the correlation between them. The correlation coefficient
is about 0.6. We see there always exists a bias between the estimated
and measured mAP, since the performance vector𝐴𝑃𝑛 (§3.1.1) used
to perform estimations, is obtained from another public dataset. We
argue that we can ignore such the bias because we only focus the
relative difference among plans to pick the proper one.

4.3.3 Gains from partition padding. We add margins to each
divided block to avoid objects being cut-off (§3.1.5). To validate the
benefits of the partition padding, we compare the achieved mAP of
plans with and without the padding, using different latency budgets
in Remix. Table 3 shows the details. We observe that the padded
plans consistently outperform the plans without padding, leading
to up to 11.3% relative mAP improvement and more 1.2% absolute
mAP on average. Meanwhile since we only pad necessary margins
adaptively. The margins are so tiny that there is almost no extra
overhead.

4.4 Evaluation of Selective Execution
Next, we evaluate each key techniques in the selective execution
module with Jetson. This module is introduced to further accelerate
the inference by skipping several divided blocks. Thus, we present
the saved latency as well as the impacts on the detection accuracy.

4.4.1 Speedup from batch execution. Since we partition high-
resolution inputs, Remix naturally has the opportunity to execute
blocks assigned with the same network in a batch (§3.2.2). We mea-
sure the latency with and without batching. The results show that
the batching execution can bring 1.11× to 1.32× speedup across dif-
ferent partition plans, meanwhile it has no impacts on the achieved
mAP.

4.4.2 Speedup from partition selection. The selective execu-
tion module is designed to skip the blocks containing no object
in the run time. To validate its effectiveness, we measure the la-
tency reduction with and without the partition selection technique.
Fig. 12 demonstrates the comparison under various latency budgets.
With the selective execution module, Remix can achieve about 1.2×
to 1.7× speedup.

We also observe that the speedup varies across different scenes.
Fig. 13 shows such the variances where we set the latency budget to
𝑇𝐷6. The selective execution module can bring the higher latency
reduction in the scene that has the clear spatial locality, otherwise
the gain is limited. For example, the object distribution of Scene D
is significantly well-regulated shown in Fig. 9(b), where the latency
reduction is about 14%. Alternatively, the reduction for Scene B,
shown in Fig. 9(a), is only about 4%.

Since some blocks might not be processed, we care about the
impacts on the detection accuracy. Fig. 14 demonstrates the mAP
loss when applying the selective execution. The mAP loss is less
than 0.1% on average. Since we use the very conservative strategy
to select blocks, only those blocks containing no object are skipped
in most cases. We think such an impact on mAP is negligible.

4.4.3 Gains from plan controller. The saved latency from the
selective execution module can be utilized to explore more aggres-
sive partition plans to achieve better detection accuracy (§3.2.3). We
test the plan controller if it can help fully utilize the latency budget
and achieve the higher mAP. We set the latency budget to 𝑇𝐷6. We
select 4 scenes and run 10 epochs for each scene. In each epoch we
process 240 frames, then the latency controller would re-select the
partition plan for the next epoch. Fig. 15 shows the result. After
10 epochs, the averaged utilization of the latency budget improves
from 75% to 94%, meanwhile the average mAP across scenes get
about 11% relative improvement.

4.5 Case Study
Besides the public dataset PANDA, we also deploy Remix with Jet-
son in real world, and evaluate 4K videos collected by ourselves
from an enterprise campus. We capture multiple videos from the
same scene but at different times, i.e.,morning, noon and afternoon.
Thus, the distribution and density of people slightly differ across
video clips. Fig. 16 demonstrates sample frames from the collected
videos at 10:00 AM, 13:00 PM and 16:00 PM and 19:00 PM respec-
tively. In total we have nearly 12, 000 frames for the evaluation.
We use EfficientDet D0-D5 as the basic network units. We set the
latency budget to 1,000ms. For each video clip, we use the first 10%
frames to obtain partition plans. Since we don’t have labels for
these videos, we use the oracle model to generate pseudo-labels for
remaining 90% frames as reference.

4.5.1 Detectionperformance. Comparedwith the oraclemodel,
overall Remix can achieve 50.2% average mAP on frames. Due to
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(a) 10:00 AM. (b) 13:00 PM. (c) 16:00 PM. (d) 19:00 PM.

Figure 16: Sample frames collected from an enterprise campus at different times.

the plan control, Remix would continuously improve mAP by fully
utilizing the latency budget. The peak mAP achieved is up to 66%.
We also include AP50 [6], which is commonly used in industry and
a less stringent metric compared with mAP. The AP50 achieved by
Remix is around 76.3% on our own dataset.

Evaluation At Update At
10:00 AM 13:00 PM 16:00 PM 19:00 PM

10:00 AM 72.8% - - -
13:00 PM 67.7% 82.4% - -
16:00 PM 63.1% 63.5% 71.7% -
19:00 PM 78.4% 77.1% 78.3% 78.5%

Table 4: AP50 achieved by Remixwhen applying the partition
plans generated at different times.

4.5.2 Performance adaptation. As discussed in 3.1.6, the object
distribution might change over time. Remix adapts to such changes
by updating and re-generating the partition plans. We evaluate the
achieved detection accuracy at different times by using updated
partition plans. We also measure the performance by reusing the
previous partition plans. Table 4 details the results.

With the update process, Remix successfully adapts to the scene
changes, achieving the highest mAP at each period of time, i.e.,
72.8%, 82.4%, 71.7% and 78.5%, respectively. When reusing the parti-
tion plans generated previously, the performance is degraded. For
example, the AP50 is reduced by up to 14.7% if we apply the par-
tition plans generated at 10:00 AM on the video clip at 13:00 PM.
However, we also notice some partition plans might also work well
for videos at other time. For instance, when reusing the partition
plans generated at 10:00 AM onto the video clip at 19:00 PM, 78.4%
can still be obtained, only 0.1% AP50 is reduced compared with
using updated partition plans. The observation also indicates that
certain scenes might show periodic patterns over time, in terms of
object distribution.

4.5.3 Update overhead. Updating and re-generating partition
plans would introduce another overhead. Remix allows the update
process run either on the cloud or on the target edge devices. Ac-
cording to our measurements, with Jetson it costs around 4 minutes
to analyze enough historical frames (20 frames), search and gen-
erate optimized partition plans in 3 minutes. When offloading to
the cloud, the historical frames are compressed and transmitted
in 2 minutes under a 4G cellular network. The analyzing and plan
generation spend around 4 minutes in total on the server with an
Intel Xeon-E5-2690 CPU.

4.5.4 Additional inference overhead. To enable inference on
Remix, the system also introduces additional overheads. Generally,
Remix introduces four phases to finish the inference procedure
in each frame and we measure them according in our case study.
1) Pre-processing, 70ms on CPU. Once the input frame is ready 4,
Remix firstly partitions the frame to non-uniform blocks and then
resizes them to match the required size of assigned networks. 2) Se-
lection, 0.1ms on CPU. Remix determines which blocks should be
processed based on the feedback from previous detection results.
3) Inference, 960ms on GPU. Remix infers blocks by feeding them
into networks. 4) Post-processing, 32ms on CPU. Remix merges the
detection results from each block.

We notice that the pre-processing dominates the majority of
inference overhead. Thus, we analyze this issue in-depth. We find
that the partitioning process is relatively lightweight, which only
costs around 12ms. However, the resizing process is painful, spend-
ing nearly 57ms. The resizing process also varies across different
partition plans, e.g., more blocks a partition plan contains, more
overhead its pre-processing brings.

Fig. 17 demonstrates the pre-processing overhead distribution of
the generated partition plans in our case study. More than 80% of
partition plans have the pre-processing overhead less than 130ms.
For the picked plans according to the latency budget (1,000ms), the
averaged pre-processing overhead is 112ms. What’s more, due to
the selection execution, several blocks would be skipped and Remix
would not resize such blocks. Therefore, the actual pre-processing
overhead we measured is about 70ms on average in our case study.

The additional inference overhead can also be hidden. We make
use of the multiple heterogeneous computation units on edge de-
vices. According to the workflow of Remix, the pre-processing and
post-processing are executed on the CPU and the inference is on
the GPU. Therefore, we can pipeline these phases, e.g., starting
pre-processing the next frame on the CPU when inferring the cur-
rent frame on the GPU simultaneously. In this way, the most of
pre-processing overhead would be largely hidden.
4.5.5 Memory footprint. Remix processes each frame using
multiple NNs in a mixed way. Thus, we need load and initialize
all the candidate NNs, i.e., from D0 to D5, into the memory before-
hand. According to our measurements, Remix consumes at maximal
9.0 GB memory during inference on Jetson. The majorly of memory
is used by large networks, i.e., the weights and intermediate tensors
of EfficientDet-D5 consumes nearly 6.4 GB memory. Currently we

4The I/O latency, i.e., loading images from the disk or streaming frames from the
camera, is excluded in the pre-processing overhead.
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ing various partition plans.
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Figure 18: Energy consump-
tion trace when processing 8
frames with Jetson.

don’t consider only loading part of networks, we leave the explo-
ration of dynamic NN swapping as future work to optimize the
memory footprint.

4.5.6 Energy consumption. We also measure the energy con-
sumption of Remix. We use the built-in INA3221 powermonitor [13]
with Jetson to collect the instant energy consumption traces. The
sampling rate is 20𝐻𝑧. Fig. 18 illustrates a typical trace. Overall
the averaged energy consumption per frame is about 12.7𝑊 in
total. The GPU consumes the majority power, 10.6𝑊 on average
specifically. The peak of energy consumption is nearly 21.3𝑊 .

5 RELATEDWORK
Object Detection on Edge Devices. Object detection is well stud-
ied in computer vision with rich applications, e.g., video surveil-
lance, activity recognition, and object tracking. Today, the SOTA ob-
ject detectors are based on convolutional neural networks (CNNs) [46]
due to their powerful feature extraction ability. Existing object de-
tectors can be classified into two categories, including two-stage
detectors and one-stage detectors. The two-stage detectors, e.g.,
Faster R-CNN [64] and Mask R-CNN [36], reach the highest ac-
curacy, but are typically slower since they typically require many
inference steps for each image. Instead, the single-stage detectors
such as YOLO [62] and SSD [53] can significantly reduce the latency
although the accuracy is much lower. Building upon single frame
detectors, video object detection focus on incorporating contextual
properties to improve the detection accuracy and speed [19, 52], by
linking per-frame detection together [35, 43], extracting and propa-
gating intermediate features across frames via optical flow [88, 89],
and designing associated network modules [23], e.g., 3D convolu-
tions [58, 76] or recurrent networks [38, 51].

To push object detection abilities to resource-constrained devices,
a typical approach is to adapt detectors optimized for edge [22, 25,
28, 29, 53, 66]. We use the SOTA EfficientDet [69, 70] series in
Remix, they can also be replaced to any other set of NNs. Although
much effort has been put into optimizing NNs for edge, existing
solutions [50, 65, 85] are not designed to deal with high-resolution
inputs on device. Instead of most on-device object detection ap-
proaches that attempts to design a more efficient NN, we design
Remix to better utilize these existing diverse NNs by assigning
proper networks for different input partitions.
On-device Inference Acceleration. There is also a large line
of work focused on accelerating NN on edge devices, including
NN compression methods, hardware-based methods and software-
based methods.

NN compression mainly aims to reduce the network size to
save computation cost and memory overhead. Pruning [33, 57] and

quantization [32, 39] are proposed to cut off weights. The optimized
NNs can be directly used in Remix as network candidates.

The hardware-basedmethodsmainly attempt to reduce inference
latency by considering hardware characteristics. Some approaches
proposed to boost computation by unleashing the potential of ex-
isting hardware chips on edge devices, including CPU [72, 84],
GPU [40, 42, 45, 79, 81], FPGA [73] aswell as domain-specific proces-
sors [24, 31, 47, 75, 83]. Remix does not assume any certain type of
edge device, and the emerging AI accelerators and hardware-aware
optimization techniques can be incorporated into our framework
to achieve higher efficiency.

Existing software-based NN inference acceleration approaches
mainly focus on more intelligent and efficient resource schedul-
ing [27, 34, 44, 59, 80], or make use of collective power of edge
nodes [55], spatial and temporal locality [41, 78] and redundancy [30]
of on-device inference workloads. Remix belongs to software-based
methods and also incorporates acceleration techniques based on
resource scheduling and locality. However, our work is tailored for
video analytics. The core of Remix is the adaptive partition method
and selective execution strategy, which are significant different
from existing software-based NN acceleration approaches.

6 DISCUSSION AND FUTUREWORK
We notice that the performance of Remix highly depends on the
selected networks. On the one hand, the best detection accuracy
and the fastest inference are determined by the largest and smallest
networks in the NN candidates, respectively. On the other hand,
the diversity of selected NNs would enrich the optimization space
of Remix, leading to a better performance. Although we use Effi-
cientDet as examples in this paper, we allow users to apply any
other object detection NNs.

While Remix made the first step in building a flexible high res-
olution object detection framework using adaptive partitioning,
several design aspects of Remix warrant further investigation. First,
it would be interesting to explore accurate and efficient techniques
to detect object distribution changes that trigger partition plan up-
date. Second, how to select frames from history for the generation
of high-quality partition plans is still an open question. Lastly, more
efforts need to be put in reducing the pre-processing overhead and
optimizing memory footprint.

7 CONCLUSION
In this paper, we present Remix, a fixable framework for high-
resolution object detection on edge devices. Based on the under-
standings of object distributions and NNs’ characteristics, Remix
intelligently distributes the limited compute power across the high-
resolution image, by adaptively partitioning it into non-uniform
blocks, and assigning each block a proper network, best balancing
the total inference latency and achieved detection accuracy. We also
introduce a series of techniques to make Remix robust, effective and
efficient. We evaluate Remix on real-world videos and the results
shows Remix can either achieve about 65.3% mAP improvements
on average for a given latency budget or speed up the inference by
up to 8.1× while obtaining competitive accuracy, compared with
SOTA object detectors.
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