



# Mobility Modeling and Prediction in Bike-Sharing Systems

Zidong Yang, Ji Hu, <u>Yuanchao Shu</u>, Peng Cheng, Jiming Chen and Thomas Moscibroda

# Growing Dramatically Worldwide

.tom | 512.795.8888

# Growing Dramatically Worldwide

> 500 bike-sharing systems
> 50 countries
> 1,000,000 shared bicycles





#### What's unique about bike-sharing?

| On-demand | Decentralized | Unattended | Concentrated |
|-----------|---------------|------------|--------------|
|           |               |            |              |
|           |               |            |              |
|           |               |            |              |
|           |               |            |              |

Compared with other forms of shared-use mobility

- 1. Unlike conventional public transit (e.g., subways and buses) which follows a regular schedule and pre-determined routes, bike-sharing provides transportation on an **on-demand** basis with a **decentralized** structure.
- 2. Bike-sharing differs from classic ride-sharing (e.g., carpooling) and ride-sourcing (e.g., Uber and Lyft) in that bicycles are typically **unattended**. Also, during vacant hours, bicycles are **concentrated** at a group of stations.

### Uneven distribution of bikes across stations

- Caused by uncontrolled, uneven usage demand
- Making check in or check out service unavailable at some stations
- Bike redistribution is non-trivial



#### Balancing Bike-Share Stations Has Become a Serious Scientific Endeavor

Some top mathematicians and computer scientists are devoting time to the problem.

ERIC JAFFE | 💆 @e\_jaffe | Aug 27, 2014 | 🗭 43 Comments





### Uneven distribution of bikes across stations

- Caused by uncontrolled, uneven usage demand
- Making check in or check out service unavailable at some stations
- Bike redistribution is non-trivial

| Bike redistribution strategy design | Bike utilization<br>balancing | Station location selection | Operation hour<br>optimization |
|-------------------------------------|-------------------------------|----------------------------|--------------------------------|
|                                     |                               |                            |                                |
|                                     |                               |                            |                                |



#### Network modeling is the key and foundation

To understand how people rent and return bicycles To understand how bicycles move among stations

#### Studies have been conducted

Extensive research on the nature of BSS, business models, how they have spread and adopted Limited station clustering and coarse-grained rental volume forecasts

#### No fine-grained modeling and prediction





### Main contributions

#### Spatio-temporal mobility model

To model the bike-sharing system as a dynamic network To take into account the interactions among all stations

#### Traffic (check in/out) prediction mechanism

To jointly consider the spatio-temporal correlations and additional time factors and meteorology On a per-station basis with sub-hour granularity

#### Evaluation with world's largest public BSS

More than 2800 stations and over 103 million check in/out records Best performance with an 85 percentile relative error of 0.6 for both check in and check out prediction





### Network modeling and flow prediction Problem formulation

- Active objects (users) and Reactive objects (stations)
  - A shift instance (SI) = check out + movement + check in
- Coupled vs. Mutually independent



### Network modeling and flow prediction Design overview

- Modeling the mobility of undocked bicycles
  - Probabilistic model based on historical data to describe the bike movements
- Modeling the check out behaviors
  - Random forest theory to model and predict the check out behaviors



## Network modeling

#### Theoretical mobility model

Aim to quantify bikes that will be checked in at station i during target period  $[t, t + \Delta t]$  in the future



 $A_i = \sum_{j \in N} D_j \Gamma_{ji} P_t$ 

- $A_i$ : The number of bikes checking in to station i
- $D_i$ : The number of bikes checking out from station j
- $\Gamma_{ji}$ : The transfer probability from station j to station i
- $\dot{P_t}$ : The probability that the bike will check in to station *i* within the target period

Network modeling Theoretical mobility model Temporal discretization  $n_{ji} = \sum_{k=1}^{N} D_j(t_k, \delta) \Upsilon_{ji}(t_k) \left( F_{ji}(t + \Delta - t_k) - F_{ji}(t - t_k) \right)$  $Y_{ii}$  and  $F_{ii}$  can be obtained based on historical SI data Get the expression for  $A_i(t, \Delta t) = \sum_{j \in N} n_{ji}$ 



# Network modeling

### Pruning

Temporal pruning

- 99.6% SIs are completed within 3 hours
- $k \in [0, \infty] \Rightarrow k \in [0, 3]$

#### Spatial pruning

- Top 200 stations contribute 96.6% of bikes on average
- $N \leq 2800 \Rightarrow N \leq 200$
- $\Upsilon_{ji}(t)$  Discretization and Calculation
- Discretize  $Y_{ji}(t)$  into a piece-wise function
- Compute its value within each time slot (0.5 hour) based on historical check in/out data



## Bicycle check out prediction

### Feature extraction

Offline features

- Time factors (day of week, time of day, weekday, holiday)
- Meteorology (temperature, humidity, visibility, wind speed)



#### Online features

• Online check out number from the previous time window

## Bicycle check out prediction Random forest model

Deals with both categorical and numerical variables

Provides importance of features

Can be easily parallelized

### Put it all together

Check out

volume



## Evaluation

### Dataset description

### The BSS dataset

World's largest public BSS in Hangzhou, China Over 3300 stations and 84,000 shared bikes, 103,661,080 records

### The meteorology dataset

Weather conditions of Hangzhou with 17,520 (i.e., 24\*2\*365) records

| user_id      | rent_netid  | tran_date   | tran_time |
|--------------|-------------|-------------|-----------|
| 6114381      | 4051        | 20130101    | 000152    |
| return_netid | return_date | return_time | bike_id   |
| 4015         | 20130101    | 001547      | 013672    |

| Time (CST)     | Temp (°F)        | Dew Point (°F)   |
|----------------|------------------|------------------|
| 12:30 PM       | 100.4            | 69.8             |
| Pressure (hPa) | Humidity (%)     | Visibility (MPH) |
| 29.65          | 37               | 6.2              |
| Wind Dir       | Wind Speed (MPH) | Conditions       |
| WSW            | 8.9              | Partly Cloudy    |

### Evaluation

### Baseline approaches

- Historical Average (HA) [Gast et, al. CIKM'15]
- Auto-Regressive and Moving Average (ARMA) [Vogel et, al. CL'11]
- HP-MSI/P-TD [Li et, al. SIGSPATIAL'15]

### Evaluation methodology

- Check out prediction
- Check in estimation

### Evaluation Check out prediction

- Case study
  - Check out number over 24 hours
  - Summer > Winter
  - Different feature importance

| Day of week             | Hour       | Temperature | Humidity |
|-------------------------|------------|-------------|----------|
| 0.0288                  | 0.1434     | 0.0846      | 0.0514   |
| Visibility              | Wind speed | Holiday     | Workday  |
| 0.0332                  | 0.0211     | 0.0030      | 0.0064   |
| Online check out number |            |             |          |
| 0.6282                  |            |             |          |



Check out prediction at station 3648

### Evaluation

#### Check out prediction

- Overall performance
  - First 20 days of each month to train, and predict the numbers in remaining days
  - Absolute error: numbers of bikes
  - Relative error: dividing the absolute error by the ground truth.



Overall performance

### Evaluation

#### Check in estimation

- Overall performance
  - First 20 days of each month to train, and predict the numbers in remaining days
  - $\Delta$  = 30 (i.e., each approach is required to estimate check in number in the following 30 minutes)
  - Best relative error from MM



Overall performance

# Insights

### Variation Among Different Scenarios

Better prediction from workdays and stations in business area

### User-centric Modeling and Prediction

Identify regular users and exploit their profiles

*n* routes of which the check out/in stations fall into two small circles

| n  | regular user(%) | n  | regular user(%) |
|----|-----------------|----|-----------------|
| 6  | 12.55%          | 14 | 3.85%           |
| 8  | 9.19%           | 16 | 2.87%           |
| 10 | 6.65%           | 18 | 2.02%           |
| 12 | 5.02%           | 20 | 1.23%           |

Regular user percentage



#### From a mobile system point of view



Exploit the inherent diversities from multi-source data (i.e., taxi, bus, subway) Design an efficient and practical rebalancing algorithm

Station location optimization, service hour optimization, pricing strategy design etc.

# Demo: Data Analysis and Visualization in Bike-Sharing System









yuanchao.shu@microsoft.com