
This paper is included in the Proceedings of the
19th USENIX Symposium on Networked Systems

Design and Implementation.
April 4–6, 2022 • Renton, WA, USA

978-1-939133-27-4

Open access to the Proceedings of the
19th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Ekya: Continuous Learning of Video Analytics Models
on Edge Compute Servers

Romil Bhardwaj, Microsoft and UC Berkeley; Zhengxu Xia, University of Chicago;
Ganesh Ananthanarayanan, Microsoft; Junchen Jiang, University of Chicago;

Yuanchao Shu, Nikolaos Karianakis, Kevin Hsieh, and Paramvir Bahl, Microsoft;
Ion Stoica, UC Berkeley

https://www.usenix.org/conference/nsdi22/presentation/bhardwaj

Ekya: Continuous Learning of Video Analytics Models on Edge Compute Servers

Romil Bhardwaj1,2, Zhengxu Xia3, Ganesh Ananthanarayanan1, Junchen Jiang3, Yuanchao Shu1, Nikolaos
Karianakis1, Kevin Hsieh1, Paramvir Bahl1, and Ion Stoica2

1Microsoft, 2UC Berkeley, 3University of Chicago

Abstract
Video analytics applications use edge compute servers for
processing videos. Compressed models that are deployed on
the edge servers for inference suffer from data drift where the
live video data diverges from the training data. Continuous
learning handles data drift by periodically retraining the mod-
els on new data. Our work addresses the challenge of jointly
supporting inference and retraining tasks on edge servers,
which requires navigating the fundamental tradeoff between
the retrained model’s accuracy and the inference accuracy.
Our solution Ekya balances this tradeoff across multiple mod-
els and uses a micro-profiler to identify the models most in
need of retraining. Ekya’s accuracy gain compared to a base-
line scheduler is 29% higher, and the baseline requires 4×
more GPU resources to achieve the same accuracy as Ekya.

1 Introduction
Video analytics applications, such as for urban mobility [2, 5]
and smart cars [27], are being powered by deep neural network
(DNN) models for object detection and classification, e.g.,
Yolo [36], ResNet [39] and EfficientNet [61]. Video analytics
deployments stream the videos to edge servers [14, 15] placed
on-premise [13, 38, 81, 84]. Edge computation is preferred
for video analytics as it does not require expensive network
links to stream videos to the cloud [81], while also ensuring
privacy of the videos (e.g., many European cities mandate
against streaming their videos to the cloud [11, 87]).

Edge compute is provisioned with limited resources (e.g.,
with weak GPUs [14, 15]). This limitation is worsened by the
mismatch between the growth rate of the compute demands
of models and the compute cycles of processors [12, 90].
As a result, edge deployments rely on model compression
[67, 86, 94]. The compressed DNNs are initially trained on
representative data from each video stream, but while in the
field, they are affected by data drift, i.e., the live video data
diverges significantly from the data that was used for training
[23, 52, 77, 79]. Cameras in streets and smart cars encounter
varying scenes over time, e.g., lighting, crowd densities, and
changing object mixes. It is difficult to exhaustively cover all

these variations in the training, especially since even subtle
variations affect the accuracy. As a result, there is a sizable
drop in the accuracy of edge DNNs due to data drift (by 22%;
§2.3). In fact, the fewer weights and shallower architectures
of compressed DNNs often make them unsuited to provide
high accuracy when trained with large variations in the data.
Continuous model retraining. A promising approach to
address data drift is continuous learning. The edge DNNs are
incrementally retrained on new video samples even as some
earlier knowledge is retained [28, 83]. Continuous learning
techniques retrain the DNNs periodically [72, 93]; we refer to
the period between two retrainings as the “retraining window”
and use a sample of the data that is accumulated during each
window for retraining. Such ongoing learning [42, 89, 96]
helps the compressed models maintain high accuracy.

Edge servers use their GPUs [15] for DNN inference on
many live video streams (e.g., traffic cameras in a city).
Adding continuous training to edge servers presents a tradeoff
between the live inference accuracy and drop in accuracy due
to data drift. Allocating more resources to the retraining job
allows it to finish faster and provide a more accurate model
sooner. At the same time, during the retraining, taking away
resources from the inference job lowers its accuracy (because
it may have to sample the frames of the video to be analyzed).

Central to the resource demand and accuracy of the jobs
are their configurations. For retraining jobs, configurations
refer to the hyperparameters, e.g., number of training epochs,
that substantially impact the resource demand and accuracies
(§3.1). The improvement in accuracy due to retraining also
depends on how much the characteristics of the live videos
have changed. For inference jobs, configurations like frame
sampling and resolution impact the accuracy and resources
needed to keep up with analyzing the live video [22, 37].
Problem statement. We make the following decisions for
retraining. (1) in each retraining window, decide which of the
edge models to retrain; (2) allocate the edge server’s GPU
resources among the retraining and inference jobs, and (3)
select the configurations of the retraining and inference jobs.
We also constraint our decisions such that the inference ac-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 119

curacy at any point in time does not drop below a minimum
value (so that the outputs continue to remain useful to the
application). Our objective in making the above three deci-
sions is to maximize the inference accuracy averaged over
the retraining window (aggregating the accuracies during and
after the retrainings). Maximizing inference accuracy over
the retraining window creates new challenges as it is different
from (i) video inference systems that optimize only the instan-
taneous accuracy [22, 32, 37], (ii) model training systems that
optimize only the eventual accuracy [8, 17, 69, 85, 88, 95].

Addressing the fundamental tradeoff between the retrained
model’s accuracy and the inference accuracy is computation-
ally complex. First, the decision space is multi-dimensional
consisting of a diverse set of retraining and inference configu-
rations, and choices of resource allocations over time. Second,
it is difficult to know the performance of different configura-
tions (in resource usage and accuracy) as it requires actually
retraining using different configurations. Data drift exacer-
bates these challenges because a decision that works well in a
retraining window may not do so in the future.
Solution components. Our solution Ekya has two main com-
ponents: a resource scheduler and a performance estimator.

In each retraining window, the resource scheduler makes
the three decisions listed above in our problem statement. In
its decisions, Ekya’s scheduler prioritizes retraining the mod-
els of those video streams whose characteristics have changed
the most because these models have been most affected by
data drift. The scheduler decides against retraining the models
which do not improve our target metric. To prune the large
decision space, the scheduler uses the following techniques.
First, it simplifies the spatial complexity by considering GPU
allocations only in coarse fractions (e.g., 10%) that are ac-
curate enough for the scheduling decisions, while also being
mindful of the granularity achievable in modern GPUs [4].
Second, it does not change allocations to jobs during the re-
training, thus largely sidestepping the temporal complexity.
Finally, our micro-profiler (described below) prunes the list
of configurations to only the promising options.

To make efficient choices of configurations, the resource
scheduler relies on estimates of accuracy after the retraining
and the resource demands. We have designed a micro-profiler
that observes the accuracy of the retraining configurations on a
small subset of the training data in the retraining window with
just a few epochs. It uses these observations to extrapolate the
accuracies when retrained on a larger dataset for many more
epochs. Further, we restrict the micro-profiling to only a small
set of promising retraining configurations. These techniques
result in Ekya’s micro-profiler being 100× more efficient
than exhaustive profiling while still estimating accuracies
with an error of 5.8%. To estimate the resource demands,
the micro-profiler measures the retraining duration per epoch
when 100% of the GPU is allocated, and scales for different
allocations, epochs, and training data sizes.
Implementation and Evaluation. We have evaluated Ekya

Edge Server
Cameras

Local
network

Retraining & Inference
Containers

(GPUs)

Figure 1: Cameras connect to the edge server, with consumer-
grade GPUs for DNN inference and retraining containers.

using a system implementation and trace-driven simulation.
We used video workloads from dashboard cameras of smart
cars (Waymo [68] and Cityscapes [57]) as well as from traffic
and building cameras over 24 hours. Ekya’s accuracy com-
pared to competing baselines is 29% higher. As a measure of
Ekya’s efficiency, attaining the same accuracy as Ekya will
require 4× more GPU resources on the edge for the baseline.
Contributions: Our work makes the following contributions.
1) We introduce the metric of inference accuracy averaged
over the retraining window for continuous training systems.
2) We design an efficient micro-profiler to estimate the benefits
and costs of retraining edge DNN models.
3) We design a scalable resource scheduler for joint retraining
and inference on edge servers.
4) We release Ekya’s source code and video datasets with
135 hours of videos and corresponding labels to spur future
research in continuous learning at the edge. See aka.ms/ekya.

2 Continuous training on edge compute
2.1 Edge Computing for Video Analytics

Video analytics deployments commonly analyze videos on
edge servers placed on-premise (e.g., from AWS [14] or Azure
[15]). A typical edge server supports tens of video streams
[19], e.g., on the cameras in a building, with customized mod-
els for each stream [59] (see Figure 1).Video analytics ap-
plications adopt edge computing for the following reasons
[13, 38, 81].

1) Edge deployments are often in locations where the up-
link network to the cloud is expensive for shipping continuous
video streams, e.g., in oil rigs with expensive satellite network
or smart cars with data-limited cellular network. 1

2) Network links out of the edge locations experience out-
ages [76, 81]. Edge compute provides robustness against
disconnection to the cloud [26] and prevents disruptions [20].

3) Videos often contain sensitive and private data that users
do not want sent to the cloud (e.g., many EU cities legally
mandate that traffic videos be processed on-premise [11, 87]).

Thus, due to reasons of network cost and video privacy, it
is preferred to run both inference and retraining on the edge
compute device itself without relying on the cloud. In fact,
with bandwidths typical in edge deployments, cloud-based
solutions are slower and result in lower accuracies (§6.4).

1The uplinks of LTE cellular or satellite links is 3− 10Mb/s [58, 65],
which can only support a couple of 1080p 30 fps HD video streams whereas
a typical deployment has many more cameras [81].

120 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://aka.ms/ekya

2.2 Compressed DNN Models and Data drift

Advances in computer vision research have led to high-
accuracy DNN models that achieve high accuracy with a large
number of weights, deep architectures, and copious training
data. While highly accurate, using these heavy and general
DNNs for video analytics is both expensive and slow [22, 34],
which make them unfit for resource-constrained edge comput-
ing. The most common approach to addressing the resource
constraints on the edge is to train and deploy specialized
and compressed DNNs [53, 60, 64, 67, 86, 94], which con-
sist of far fewer weights and shallower architectures. For in-
stance, Microsoft’s edge video analytics platform [5] uses
a compressed DNN (TinyYOLO [75]) for efficiency. Simi-
larly, Google released Learn2Compress[2] for edge devices
to automate the generation of compressed models from pro-
prietary models. These compressed DNNs are trained to only
recognize the limited objects and scenes specific to each video
stream. In other words, to maintain high accuracy, they forego
generality for improved compute efficiency [22, 34, 72].

Data drift. As specialized edge DNNs have shallower archi-
tectures than general DNNs, they can only memorize limited
amount of object appearances, object classes, and scenes. As
a result, specialized edge DNNs are particularly vulnerable
to data drift [23, 52, 77, 79], where live video data diverges
significantly from the initial training data. For example, varia-
tions in the object pose, scene density (e.g. rush hours), and
lighting (e.g., sunny vs. rainy days) over time make it difficult
for traffic cameras to accurately identify the objects of interest
(cars, bicycles, road signs). Cameras in modern cars observe
vastly varying scenes (e.g., building types, crowd sizes) as
they move through different neighborhoods and cities. Fur-
ther, the distribution of the objects change over time, which
reduces the edge model’s accuracy [93, 99]. Due to their abil-
ity to memorize limited amount of object variations, edge
DNNs have to be continuously updated with recent data and
changing object distributions to maintain a high accuracy.

Continuous training. The preferred approach, that has
gained significant attention, is for edge DNNs to continu-
ously learn as they incrementally observe new samples over
time [42, 89, 96]. The high temporal locality of videos allows
the edge DNNs to focus their learning on the most recent
object appearances and object classes [72, 82]. In Ekya, we
use a modified version of iCaRL[89] learning algorithm to
on-board new classes, as well as adapt to the changing char-
acteristics of the existing classes. Since manual labeling is
not feasible for continuous training systems on the edge, the
labels for the retraining are obtained from a “golden model” -
a highly accurate (87% and 84% accuracy on Cityscapes and
Waymo datasets, respectively) but expensive model (deeper
architecture with large number of weights). The golden model
cannot keep up with inference on the live videos and we use
it to label only a small fraction of the videos in the retrain-
ing window. Our approach is essentially that of supervising a

(a) Class Distribution (b) Accuracy

(c) Accuracy vs data drift (d) Person class variations

Figure 2: Continuous learning in the Cityscapes dataset. Shift
in class distributions (a) across windows necessitates continuous
learning (b). Model accuracy is not only affected by class distri-
bution shifts (c), but also by changes in object appearances (d).

low-cost “student” model with a high-cost “teacher” model
(or knowledge distillation [33]), and this has been broadly
applied in computer vision literature [42, 72, 93, 96].

2.3 Accuracy benefits of continuous learning

To show the benefits of continuous learning, we use the video
stream from one example city in the Cityscapes dataset [57]
that consists of videos from dashboard cameras in many cities.
In our evaluation in §6, we use both moving dashboard cam-
eras as well as static cameras over long time periods. We
divide the video data in our example city into ten fixed re-
training windows (200s in this example).
Understanding sources of data drift. Figure 2a shows the
change of object class distributions across windows. The ini-
tial five windows see a fair amount of persons and bicycles,
but bicycles rarely show up in windows 6 and 7, while the
share of persons varies considerably across windows 6−10.
Figure 2c summarizes the effect of this data drift on model
accuracy in five independent video streams, C1-C5. For each
stream, we train a baseline model on the first five windows,
and test it against five windows in the future and use cosine
similarity to measure the class distribution shift for each win-
dow. Though accuracy generally improves when the model is
used on windows with similar class distributions (high cosine
similarity), the relationship is not guaranteed (C2, C3). This
is because class distribution shift is not the only form of data
drift. Illumination, pose and appearance differences also af-
fect model performance (e.g. clothing and angles for objects
in the person class vary significantly; Figure 2d).
Improving accuracy with continuous learning. Figure 2b
plots inference accuracy of an edge DNN (a compressed
ResNet18 classifier) in the last five windows using different
training options. (1) Training a compressed ResNet18 with
video data on all other cities of the Cityscapes dataset does not

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 121

(a) Effect of Hyperparameters (b) Resource-accuracy

Figure 3: Measuring retraining configurations. GPU seconds
refers to the duration taken for retraining with 100% GPU allo-
cation. (a) varies two example hyperparameters, keeping others
constant. Note the Pareto boundary of configurations in (b); for
every non-Pareto configuration, there is at least one Pareto con-
figuration that is better than it in both accuracy and GPU cost.

result in good performance. (2) Unsurprisingly, we observe
that training the edge DNN once using data from the first
five windows of this example city improves the accuracy. (3)
Continuous retraining using the most recent data for training
achieves the highest accuracy consistently. Its accuracy is
higher than the other options by up to 22%.

Interestingly, using the data from the first five windows
to train the larger ResNet101 DNN (not graphed) achieves
better accuracy than the continuously retrained ResNet18.
The substantially better accuracy of ResNet101 compared
to ResNet18 when trained on the same data of the first five
windows also shows that this training data was indeed fairly
representative. But the lightweight ResNet18’s weights and
architecture limits its ability to learn and is a key contributor
to its lower accuracy. Nonetheless, ResNet101 is 13× slower
than the compressed ResNet18 [21]. This makes the efficient
ResNet18 more suited for edge deployments and continuous
learning enables it to maintain high accuracy even with data
drift. Therefore, the need for continuous training of edge
DNNs is ongoing and not just during a “ramp-up” phase.

3 Scheduling retraining and inference jointly
We propose joint retraining and inference on edge servers.
The joint approach utilizes resources better than statically pro-
visioning compute for retraining. Since retraining is periodic
[72, 93] with far higher compute demands than inference,
static provisioning causes idling. Compared to uploading
videos to the cloud for retraining, our approach has advan-
tages in privacy (§2.1), and network costs and accuracy (§6.4).

3.1 Configuration diversity of retraining and inference

Tradeoffs in retraining configurations. The hyperparame-
ters for retraining, or “retraining configurations”, influence
the resource demands and accuracy. Retraining fewer layers
of the DNN (or, “freezing” more layers) consumes lesser GPU
resources, as does training on fewer data samples, but they
also produce a model with lower accuracy; Figure 3a.

Figure 3b illustrates the resource-accuracy trade-offs for an
edge DNN (ResNet18) with various hyperparameters: number
of training epochs, batch sizes, number of neurons in the last

Configuration Retraining Window 1 Retraining Window 2

End
Accuracy

GPU
seconds

End
Accuracy

GPU
seconds

Video A Cfg1A 75 85 95 90

Video A Cfg2A (*) 70 65 90 40

Video B Cfg1B 90 80 98 80

Video B Cfg2B (*) 85 50 90 70

Table 1: Hyperparameter configurations for retraining jobs in
Figure 4’s example. At the start of retraining window 1, camera
A’s inference model has an accuracy of 65% and camera B’s
inference model has an accuracy of 50%. Asterisk (*) denotes
the configurations picked in Figures 4b and 4d.

layer, number of frozen layers, and fraction of training data.
We make two observations. First, there is a wide spread in the
resource usage (measured in GPU seconds), by upto a factor
of 200×. Second, higher resource usage does not always yield
higher accuracy. For the two configurations circled in Figure
3b, their GPU demands vary by 6× even though their accu-
racies are the same (∼ 76%). Thus, careful selection of the
configurations considerably impacts the resource efficiency.
Moreover, the accuracy spread across configurations is depen-
dent on the extent of data-drift. Retraining on visually similar
data with little drift results in a narrower spread. With the
changing characteristics of videos, it is challenging to effi-
ciently obtain the resource-accuracy profiles for retraining.
Tradeoffs in inference configurations. Inference pipelines
also allow for flexibility in their resource demands at the cost
of accuracy through configurations to downsize and sample
frames [59]. Reducing the resource allocation to inference
pipelines increases the processing latency per frame, which
then calls for sub-sampling the incoming frames to match
the processing rate, that in turn reduces inference accuracy
[32]. Prior work has made dramatic advancements in profilers
that efficiently obtain the resource-accuracy relationship for
inference configurations [37]. We use these efficient inference
profilers in our solution, and also to ensure that the inference
pipelines keep up with analyzing the live video streams.

3.2 Illustrative scheduling example

We use an example with 3 GPUs and two video streams, A
and B, to show the considerations in scheduling inference
and retraining tasks jointly. Each retraining uses data samples
accumulated since the beginning of the last retraining (referred
to as the “retraining window”).2 To simplify the example, we
assume the scheduler has knowledge of the resource-accuracy
profiles, but these are expensive to get in practice (we describe
our efficient solution for profiling in §4.3). Table 1 shows the
retraining configurations (Cfg1A, Cfg2A, Cgf1B, and Cgf2B),
their respective accuracies after the retraining, and GPU cost.

2Continuous learning targets retraining windows of tens of seconds to
few minutes [72, 93]. We use 120 seconds in this example. Our solution is
robust to and works with any given window duration for its decisions (See
§6.2).

122 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Uniform scheduler (b) Accuracy-optimal sched.

(c) Uniform scheduler (d) Accuracy-optimal sched.

Figure 4: Resource allocations (top) and inference accuracies
(bottom) over time for two retraining windows (each of 120s).
The left figures show a uniform scheduler which evenly splits the
3 GPUs, and picks configurations resulting in the most accurate
models. The right figures show the accuracy-optimized scheduler
that prioritizes resources and optimizes for inference accuracy
averaged over the retraining window (73% compared to the uni-
form scheduler’s 56%). The accuracy-optimized scheduler also
ensures that inference accuracy never drops below a minimum
(set to 40% in this example, denoted as aMIN).

The scheduler is responsible for selecting configurations and
allocating resources for inference and retraining jobs.
Uniform scheduling: Building upon prior work in cluster
schedulers [9, 80] and video analytics systems [32], a base-
line solution for resource allocation evenly splits the GPUs
between video streams, and each stream evenly partitions its
allocated GPUs for retraining and inference tasks; see Figure
4a. Just like model training systems [29, 44, 45], the baseline
always picks the configuration for retraining that results in
the highest accuracy (Cfg1A, Cfg1B for both windows).

Figure 4c shows the inference accuracies of the two live
streams. We see that when the retraining tasks take resources
away from the inference tasks, the inference accuracy drops
significantly (65%→ 49% for video A and 50%→ 37.5% for
video B in Window 1). While the inference accuracy increases
after retraining, it leaves too little time in the window to
reap the benefit of retraining. Averaged across both retraining
windows, the inference accuracy across the two video streams
is only 56% because the gains due to the improved accuracy
of the retrained model are undercut by the time taken for
retraining (during which inference accuracy suffered).
Accuracy-optimized scheduling: Figures 4b and 4d illustrate
an accuracy-optimized scheduler, which by taking a holistic
view on the multi-dimensional tradeoffs, provides an an aver-
age inference accuracy of 73%. In fact, to match the accura-

cies, the above uniform scheduler would require nearly twice
the GPUs (i.e., 6 GPUs instead of 3 GPUs).

This scheduler makes three key improvements. First, the
scheduler selects the hyperparameter configurations based
on their accuracy improvements relative to their GPU cost.
It selects lower accuracy options (Cfg2A/Cfg2B) instead of
the higher accuracy ones (Cfg1A/Cfg1B) because these con-
figurations are substantially cheaper (Table 1). Second, the
scheduler prioritizes retraining tasks that yield higher accu-
racy, so there is more time to reap the benefit from retraining.
For example, the scheduler prioritizes B’s retraining in Win-
dow 1 as its inference accuracy after retraining increases by
35% (compared to 5% for video A). Third, the scheduler con-
trols the accuracy drops during retraining by balancing the
retraining time and the resources taken away from inference.

4 Ekya: Solution Description
Continuous training on limited edge resources requires
smartly deciding when to retrain each video stream’s model,
how much resources to allocate, and what configurations to
use. Making these decisions presents two challenges.

First, the decision space of multi-dimensional configura-
tions and resource allocations is computationally more com-
plex than two fundamentally challenging problems of multi-
dimensional knapsack and multi-armed bandits (§4.1). Hence,
we design a thief scheduler (§4.2), a heuristic that makes the
joint retraining-inference scheduling tractable in practice.

Second, the scheduler requires the model’s exact perfor-
mance (in resource usage and inference accuracy), but this
requires retraining using all the configurations. We address
this challenge with our micro-profiler (§4.3), which retrains
only a few select configurations on a fraction of the data.
Figure 5 presents an overview of Ekya’s components.

4.1 Formulation of joint inference and retraining

The problem of joint inference and retraining aims to max-
imize overall inference accuracy for all video streams V in
a retraining window T with duration ∥T∥. All work must be
done in G GPUs. Thus, the total compute capability is G∥T∥
GPU-time. Without loss of generality, let δ be the smallest
granularity of GPU allocation. Each video v ∈V has a set of
retraining configurations Γ and a set of inference configura-
tions Λ (§3.1). Table 4 (§A) lists the notations.
Decisions. For each video v ∈ V in a window T , we decide:
(1) the retraining configuration γ ∈ Γ (γ = /0 means no retrain-
ing); (2) the inference configuration λ ∈ Λ; and (3) how many
GPUs (in multiples of δ) to allocate for retraining (R) and
inference (I). We use binary variables φvγλR I ∈ {0,1} to de-
note these decisions (see Table 4 §A for the definition). These
decisions require CT (v,γ,λ) GPU-time and yields overall ac-
curacy of AT (v,γ,λ,R ,I). AT (v,γ,λ,R ,I) is averaged across
the window T (§3.2), and the above decisions determine the
inference accuracy at each point in time.
Optimization. Maximize the inference accuracy averaged

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 123

Retraining
profiles

Execution
(retraining)

Error
Correction

(§5) Allocate
resources

 Choose
configurations

 Retraining &
inference

Thief Scheduler
(§4.2)

Execution
(inference)

Checkpointed
models (§5)

Observed
accuracy

Corrected
profiles

Performance
profiles

(retraining &
inference)

Retraining job
Inference job

Retraining job
Inference job

.

.

.

Video
jobs

Video stream 1

Video stream n

Edge Server

Configuration
Profiles
(§3.1)

Micro-profiling
(§4.3)

 Accuracy of
configs.

 Resource
demands

Figure 5: Ekya’s components and their interactions.

across all videos in a retraining window within the GPU limit.

argmax
φvγλR I

1
∥V ∥ ∑

∀v∈V ,∀γ∈Γ,∀λ∈Λ,

∀R ,∀I∈{0,1,..., G
δ
}

φvγλR I ·AT (v,γ,λ,R ,I)

subject to

1. ∑
∀v∈V ,∀γ∈Γ,∀λ∈Λ,

∀R ,∀I

φvγλR I ·CT (v,γ,λ)≤ G∥T∥

2. ∑
∀v∈V ,∀γ∈Γ,∀λ∈Λ,

∀R ,∀I

φvγλR I · (R + I)≤ G
δ

3. ∑
∀γ∈Γ,∀λ∈Λ,
∀R ,∀I

φvγλR I ≤ 1,∀v ∈ V

(1)

The first constraint ensures that the GPU allocation does
not exceed the available GPU-time G∥T∥ in the retraining
window. The second constraint limits the instantaneous allo-
cation (in multiples of δ) to never exceed the available GPUs.
The third constraint ensures that at most one configuration is
picked for retraining and inference each for a video v.

Our analysis in §A.1 shows that the above optimization
problem is harder than the multi-dimensional binary knapsack
problem and modeling the uncertainty of AT (v,γ,λ,R ,I) is
more challenging than the multi-armed bandit problem.

4.2 Thief Scheduler

Our scheduling heuristic makes the scheduling problem
tractable by decoupling resource allocation (i.e., R and I) and
configuration selection (i.e., γ and λ) (Algorithm 1). We refer
to Ekya’s scheduler as the “thief” scheduler and it iterates
among all inference and retraining jobs as follows.

(1) It starts with a fair allocation for all video streams v∈V
(line 2 in Algorithm 1). In each step, it iterates over all the
inference and retraining jobs of each video stream (lines 5-6),
and steals a tiny quantum ∆ of resources (in multiples of δ;
see Table 4, §A) from each of the other jobs (lines 10-11).

(2) With the new resource allocations (temp_alloc[]), it then
selects configurations for the jobs using the PickConfigs method
(line 14 and Algorithm 2, §A) that iterates over all the configu-
rations for inference and retraining for each video stream. For
inference jobs, among all the configurations whose accuracy
is ≥ aMIN, PickConfigs picks the configuration with the highest

accuracy that can keep up with the inference of the live video
stream given current allocation (line 3-4, Algorithm 2, §A).

For retraining jobs, PickConfigs picks the configuration that
maximizes the accuracy AT (v,γ,λ,R ,I) over the retraining
window for each video v (lines 6-12, Algorithm 2, §A). Esti-

mateAccuracy (line 7, Algorithm 2, §A) aggregates the instanta-
neous accuracies over the retraining window for a given pair
of inference configuration (chosen above) and retraining con-
figuration. Ekya’s micro-profiler (§4.3) provides the estimate
of the accuracy and the time to retrain for a retraining config-
uration when 100% of GPU is allocated, and EstimateAccuracy

proportionately scales the GPU-time for the current allocation
(in temp_alloc[]) and training data size. In doing so, it avoids
configurations whose retraining durations exceed ∥T∥ with
the current allocation (first constraint in Eq. 1).

(3) After reassigning the configurations, Ekya uses the
estimated average inference accuracy (accuracy_avg) over the
retraining window (line 14 in Algorithm 1) and keeps the new
allocations only if it improves up on the accuracy from prior
to stealing the resources (line 15 in Algorithm 1).

The thief scheduler repeats the process till the accuracy
stops increasing (lines 15-20 in Algorithm 1) and until all
the jobs have played the “thief”. Algorithm 1 is invoked at
the beginning of each retraining window, as well as on the
completion of every training job during the window.
Design rationale: We call out the key aspects that makes the
scheduler’s decision efficient by pruning the search space.
• Coarse allocations: The thief scheduler allocates GPU re-

sources in quantums of ∆. Intuitively, ∆ is the step size for
allocation used by the scheduler. Thus, the final resource
allocation from the thief scheduler is within ∆ of the opti-
mal allocation. We empirically pick a ∆ that is coarse yet
accurate enough in practice, while being mindful of mod-
ern GPUs[4]; see §6.2. Algorithm 1 ensures that the total
allocation is within the limit (second constraint in Eq 1).
• Reallocating resources only when a retraining job com-

pletes: Although one can reallocate GPU resource among
jobs at finer temporal granularity (e.g., whenever a retrain-
ing job has reached a high accuracy), we empirically find
that the gains from such complexity is marginal.
• Pruned configuration list: Our micro-profiler (described

next) speeds up the thief scheduler by giving it only the
more promising configurations. Thus, the list Γ used in
Algorithm 1 is significantly smaller than the exhaustive set.

4.3 Performance estimation with micro-profiling

Ekya’s scheduling decisions in §4.2 rely on estimations of
post-retraining accuracy and resource demand of the retrain-
ing configurations. Specifically, at the beginning of each re-
training window T , we need to profile for each video v and
each configuration γ ∈ Γ, the accuracy after retraining using γ

and the corresponding time taken to retrain.
Profiling in Ekya vs. hyperparameter tuning: While
Ekya’s profiling may look similar to hyperparameter tuning

124 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1: Thief Scheduler.
Data: Training (Γ) and inference (Λ) configurations
Result: GPU allocations R and I , chosen configurations

(γ ∈ Γ, λ ∈ Λ) ∀v ∈V
1 all_jobs[] = Union of inference and training jobs of videos V ;
/* Initialize with fair allocation */

2 best_alloc[] = fair_allocation(all_jobs);
3 best_configs[], best_accuracy_avg = PickConfigs(best_alloc);
/* Thief resource stealing */

4 for thief_job in all_jobs[] do
5 for victim_job in all_jobs[] do
6 if thief_job == victim_job then continue;
7 temp_alloc[]← best_alloc[];
8 while true do

/* ∆ is the increment of stealing */
9 temp_alloc[victim_job] −= ∆;

10 temp_alloc[thief_job] += ∆;
11 if temp_alloc[victim_job] < 0 then break ;

/* Calculate accuracy over retraining
window and pick configurations. */

12 temp_configs[], accuracy_avg =
PickConfigs(temp_alloc[]);

13 if accuracy_avg > best_accuracy_avg then
14 best_alloc[] = temp_alloc[];
15 best_accuracy_avg = accuracy_avg;
16 best_configs[] = temp_configs[];

17 else
18 break;

19 return best_alloc[], best_configs[];

(e.g., [46, 48, 62, 85]) at first blush, there are two key differ-
ences. First, Ekya needs the performance estimates of a broad
set of candidate configurations for the thief scheduler, not just
of the single best configuration, because the best configuration
is jointly decided across the many retraining and inference
jobs. Second, in contrast to hyperparameter tuning which runs
separately of the eventual inference/training, Ekya’s profiling
must share compute resource with all retraining and inference.

Opportunities: Ekya leverages three empirical observations
for efficient profiling of the retraining configurations. (i)
Resource demands of the configurations are deterministic.
Hence, we measure the GPU-time taken to retrain for each
epoch in the current retraining window when 100% of the
GPU is allocated to the retraining. This GPU-time must then
be re-scaled for varying number of epochs, GPU allocations,
and training data sizes in Algorithm 1. For re-scaling num-
ber of epochs and training data sizes, we linearly scale the
GPU-time. For re-scaling GPU allocations, we use an offline
computed profile of the model throughput for different re-
source allocations to account for sub-linear scaling. Our real
testbed-based evaluation shows that these rescaling functions
works well in practice. (ii) Post-retraining accuracy can be
roughly estimated by training on a small subset of training
data for a handful of epochs. (iii) The thief scheduler’s deci-

sions are not impacted by small errors in the estimations.
Micro-profiling design: The above insights inspired our
approach, called micro-profiling, where for each video, we
test the retraining configurations on a small subset of the
retraining data and only for a small number of epochs (well
before models converge). Our micro-profiler is 100× more
efficient than exhaustive profiling (of all configurations on the
entire training data), while predicting accuracies with an error
of 5.8%, which is low enough in practice to mostly ensure
that the thief scheduler makes the same decisions as it would
with a fully accurate prediction. We use these insights to
now explain the techniques that make Ekya’s micro-profiling
efficient.
1) Training data sampling: Ekya’s micro-profiling works on
only a small fraction (say, 5%−10%) of the training data in
the retraining window (which is already a subset of all the
videos accumulated in the retraining window). While we con-
sidered weighted sampling techniques for the micro-profiling,
we find that uniform random sampling is the most indicative
of the configuration’s performance on the full training data,
since it preserves all the data distributions and variations.
2) Early termination: Similar to data sampling, Ekya’s micro-
profiling only tests each configuration for a small number (say,
5) of training epochs. Compared to a full fledged profiling that
needs few tens of epochs to converge, such early termination
greatly speeds up the micro-profiling process.

After early termination on the sampled training data, we
obtain the (validation) accuracy of each configuration at each
epoch it was trained. We then fit the accuracy-epoch points to
the a non-linear curve model from [70] using a non-negative
least squares solver [6]. This model is then used to extrapolate
the accuracy that would be obtained by retraining with all the
data for larger number of epochs. The use of this extrapolation
is consistent with similar work in this space [55, 70].
3) Pruning bad configurations: Finally, Ekya’s micro-
profiling also prunes out those configurations for micro-
profiling (and hence, for retraining) that have historically not
been useful. These are configurations that are significantly
distant from the configurations on the Pareto curve of the
resource-accuracy profile (see Figure 3b), and thus unlikely
to be picked by the thief scheduler. To bootstrap pruning, all
configurations are evaluated in the first window. After every
2 windows, a fixed fraction of the worst performing configu-
rations are dropped. While first few retraining windows must
explore a big space of configurations, the search space size
drops exponentially over time. Avoiding these configurations
improves the efficiency of the micro-profiling.
Annotating training data: For both the micro-profiling as
well as the retraining, Ekya acquires labels using a “golden
model” (§2.2). This is a high-cost but high-accuracy model
trained on a large dataset. As explained in §2, the golden
model cannot keep up with inference on the live videos and we
use it to label only a small subset of the videos for retraining.
The delay of annotating training data with the golden model

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 125

is accounted by the scheduler as follows: we subtract the data
annotation delay from the retraining window and only pass
the remaining time of the window to Algorithm 2 (§A).

5 Implementation and Experimental Setup

Implementation: Ekya uses PyTorch [66] for running and
training ML models, and each component is implemented as
a collection of long-running processes with the Ray[63] actor
model. The micro-profiler and training/inference jobs run as
independent actors which are controlled by the thief scheduler
actor. Ekya achieves fine-grained and dynamic reallocation of
GPU between training and inference processes using Nvidia
MPS [4], which provides resource isolation within a GPU
by intercepting CUDA calls and rescheduling them. Our im-
plementation also adapts to errors in profiling by reactively
adjusting its allocations if the actual model performance di-
verges from the predictions of the micro-profiler. Ekya’s code
and datasets are available at the project page: aka.ms/ekya

Datasets: We use both on-road videos captured by dashboard
cameras as well as urban videos captured by mounted cameras.
The dashboard camera videos are from cars driving through
cities in the US and Europe, Waymo Open [68] (1000 video
segments with in total 200K frames) and Cityscapes [57] (5K
frames captured by 27 cameras) videos. The urban videos
are from stationary cameras mounted in a building (“Urban
Building”) as well as from five traffic intersections (“Urban
Traffic”), both collected over 24-hour durations. We use a
retraining window of 200 seconds in our experiments, and
split each of the videos into 200 second segments. Since the
Waymo and Cityscapes dataset do not contain continuous
timestamps, we create retraining windows by concatenating
images from the same camera in chronological order to form
a long video stream and split it into 200 second segments.

DNNs: We demonstrate Ekya’s effectiveness on two
machine learning tasks – object classification and object
detection – using multiple compressed edge DNNs for
each task: (i) object classification using ResNet18[39],
MobileNetV2[53] and ShuffleNet[98], and (ii) object detec-
tion using TinyYOLOv3[75] and SSD[49]. As explained in
§2.2, we use an expensive golden model (ResNeXt 101 [91]
for object classification and YOLOv3 [75] for object detec-
tion) to get ground truth labels for training and testing.

Testbed and trace-driven simulator: We run Ekya’s im-
plementation on AWS EC2 p3.2xlarge instances for 1 GPU
experiments and p3.8xlarge for 2 GPU experiments. Each
instance has Nvidia V100 GPUs with NVLink interconnects.

We also built a simulator to test Ekya under a wide range
of resource constraints, workloads, and longer durations. The
simulator takes as input the accuracy and resource usage (in
GPU time) of training/inference configurations logged from
our testbed. For each training job, we log the accuracy over
GPU-time. We also log the inference accuracy on the real
videos. This exhaustive trace allows us to mimic the jobs with

high fidelity under different scheduling policies.
Retraining configurations: Our retraining configurations
combine the number of epochs to train, batch size, number
of neurons in the last layer, number of layers to retrain, and
the fraction of data between retraining windows to use for
retraining (§3.1). For the object detection models (TinyYOLO
and SSDLite), we set the batch size to 8 and the fraction of
layers frozen between 0.7 and 0.9. The resource requirements
of the configurations for the detection models vary by 153×.
Baselines: Our baseline, called uniform scheduler, uses (a)
a fixed retraining configuration, and (b) a static retraining/in-
ference resource allocation (these are adopted by prior sched-
ulers [9, 32, 80]). For each dataset, we test all retraining con-
figurations on a hold-out dataset 3 (i.e., two video streams that
were never used in later tests) to produce the Pareto frontier of
the accuracy-resource tradeoffs (e.g., Figure 3). The uniform
scheduler then picks two points on the Pareto frontier as the
fixed retraining configurations to represent “high” (Config 1)
and “low” (Config 2) resource usage, and uses one of them
for all retraining windows in a test.

We also consider two alternatives in §6.4. (1) offloading re-
training to the cloud, and (2) caching and re-using a retrained
model from history based on various similarity metrics.

6 Evaluation
We evaluate Ekya’s performance, and the key findings are:
1) Compared to static retraining baselines, Ekya achieves upto
29% higher accuracy for compressed vision models in both
classification and detection. For the baseline to match Ekya’s
accuracy, it would need 4× additional GPU resources. (§6.1)
2) Both micro-profiling and thief scheduler contribute siz-
ably to Ekya’s gains. (§6.2) In particular, the micro-profiler
estimates accuracy with low median errors of 5.8%. (§6.3)
3) The thief scheduler efficiently makes its decisions in 9.4s
when deciding for 10 video streams across 8 GPUs with 18
configurations per model for a 200s retraining window. (§6.2)
4) Compared to alternate designs, including reusing cached
history models trained on similar data/scenarios as well as
retraining the models in the cloud, Ekya achieves significantly
higher accuracy without the network costs (§6.4).

6.1 Overall improvements

We evaluate Ekya and the baselines along three dimensions—
inference accuracy (% of images correctly classified for ob-
ject classification, F1 score (measured at a 0.3 threshold for
the Intersection-over-Union of the bounding box) for detec-
tion), resource consumption (in GPU time), and capacity (the
number of concurrently processed video streams). Note that
the evaluation always keeps up with the video frame rate (i.e.,
no indefinite frame queueing). By default we evaluate the
performance of Ekya on ResNet18 models, but we also show
that it generalizes to other model types and vision tasks.

3The same hold-out dataset is used to customize the off-the-shelf DNN
inference model. This is a common strategy in prior work (e.g., [22]).

126 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://aka.ms/ekya

(a) Cityscapes

(b) Waymo

Figure 6: Effect of adding video streams on accuracy with dif-
ferent schedulers. When more video streams share resources,
Ekya’s accuracy gracefully degrades while the baselines’ accu-
racy drops faster. (“Uniform (Cfg 1, 90%)” means the uniform
scheduler allocates 90% GPU to inference, 10% to retraining)

Accuracy vs. Number of concurrent video streams: Fig-
ure 6 shows the ResNet18 model’s accuracy with Ekya and
the baselines when analyzing a growing number of concur-
rent video streams under a fixed number of provisioned GPUs
for Waymo and Cityscapes datasets. The uniform baselines
use different combinations of pre-determined retraining con-
figurations and resource partitionings. For consistency, the
video streams are shuffled and assigned an id (0-10), and are
then introduced in the same increasing order of id in all ex-
periments. This ensures that different schedulers tested for k
parallel streams use the same k streams, and these k streams
are always a part of any k′ streams (k′ > k) used for testing.

As the number of video streams increases, Ekya enjoys a
growing advantage (upto 29% under 1 GPU and 23% under
2 GPU) in accuracy over the uniform baselines. This is be-
cause Ekya gradually shifts more resource from retraining
to inference and uses cheaper retraining configurations. In
contrast, increasing the number of streams forces the uniform
baseline to allocate less GPU cycles to each inference job,
while retraining jobs, which use fixed configurations, slow
down and take the bulk of each window.
Generalizing to other ML models: Ekya’s thief scheduler
can be readily applied to any ML model and task (e.g., classi-
fication or detection) that needs to be fine-tuned continuously
on newer data. To demonstrate this, we evaluate Ekya with:
• Other object classifiers: Figure 7a shows the performance

of Ekya when running MobileNetV2 and ShuffleNet as the
edge models in two independent setups for object classifica-
tion at the edge. Continuing the trend that we observed for
ResNet18 (in Figure 6), Figure 7a shows that Ekya leads

Scheduler Capacity Scaling factor1 GPU 2 GPUs
Ekya 2 8 4x

Uniform (Config 1, 50%) 2 2 1x
Uniform (Config 2, 90%) 2 4 2x
Uniform (Config 2, 50%) 2 4 2x
Uniform (Config 2, 30%) 0 2 -

Table 2: Capacity (number of video streams that can be concur-
rently supported subject to accuracy target 0.75) vs. number of
provisioned GPUs. Ekya scales better than the uniform baselines
with more available compute resource.

(a) Generalize across object classification models

(b) Object Detection Models

Figure 7: Improvement of Ekya extends to two more com-
pressed DNN classifiers and two popular object detectors.

to up to 22% better accuracy than uniform baselines.
• Object detection models: In addition to object classifica-

tion, we also evaluate using object detection tasks which
detect the bounding boxes of objects in the video stream.
Figure 7b shows Ekya outperforms the uniform baseline’s
F1 score by 19% when processing same number of con-
current video streams. Importantly, Ekya’s design broadly
applies to new tasks without any systemic changes.

These gains stem from Ekya’s ability to navigate the rich
resource-accuracy space of models by carefully selecting
training and inference hyperparameters (e.g., the width mul-
tiplier in MobileNetV2, convolution sparsity in ShuffleNet).
For the rest of our evaluation, we only present results with
ResNet18 though the observations hold for other models.
Number of video streams vs. provisioned resource: We
compare Ekya’s capacity (defined by the maximum number
of concurrent video streams subject to an accuracy threshold)
with that of uniform baseline, as more GPUs are available.
Setting an accuracy threshold is common in practice, since
applications usually require accuracy to be above a threshold
for the inference to be usable. Table 2 uses the Cityscapes
results (Figure 6) to derive the scaling factor of capacity vs.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 127

(a) Cityscapes (b) Waymo

(c) Urban Building (d) Urban Traffic

Figure 8: Inference accuracy of different schedulers when pro-
cessing 10 video streams under varying GPU provisionings.

(a) Video stream #1
(Inference accuracy = 0.82)

(b) Video stream #2
(Inference accuracy = 0.83)

Figure 9: Ekya’s resource allocation to two video streams over
time. Ekya adapts when to retrain each stream’s model and
allocates resource based on the retraining benefit to each stream.

the number of provisioned GPUs and shows that with more
provisioned GPUs, Ekya scales faster than uniform baselines.
Accuracy vs. provisioned resource: Finally, Figure 8 stress-
tests Ekya and the uniform baselines to process 10 concurrent
video streams and shows their average inference accuracy
under different number of GPUs. To scale to more GPUs, we
use the simulator (§5), which uses profiles recorded from real
tests and we verified that it produced similar results as the
implementation at small-scale. As we increase the number
of provisioned GPUs, we see that Ekya consistently outper-
forms the best of the two baselines by a considerable margin
and more importantly, with 4 GPUs Ekya achieves higher
accuracy (marked with the dotted horizontal line) than the
baselines at 16 GPUs (i.e., 4× resource saving).

The above results show that Ekya is more beneficial when
there is high contention for the GPU on the edge. Under low
contention, the room for improvement shrinks. Contention is,
however, common in the edge since the resources are tightly
provisioned to minimize their idling.

6.2 Understanding Ekya’s improvements

Resource allocation across streams: Figure 9 shows Ekya’s
resource allocation across two example video streams over

several retraining windows. In contrast to the uniform base-
lines that use the same retraining configuration and allocate
equal resource to retraining and inference (when retraining
takes place), Ekya retrains the model only when it benefits
and allocates different amounts of GPUs to the retraining jobs
of video streams, depending on how much accuracy gain is
expected from retraining on each stream. In this case, more
resource is diverted to video stream #1 (#1 can benefit more
from retraining than #2) and both video streams achieve much
higher accuracies (0.82 and 0.83) than the uniform baseline.

Component-wise contribution: Figure 10a understands the
contributions of resource allocation and configuration selec-
tion (on 10 video streams with 4 GPUs provisioned). We
construct two variants from Ekya: Ekya-FixedRes, which re-
moves the smart resource allocation in Ekya (i.e., using the
inference/training resource partition of the uniform baseline),
and Ekya-FixedConfig removes the microprofiling-based con-
figuration selection in Ekya (i.e., using the fixed configuration
of the uniform baseline). Figure 10a shows that both adaptive
resource allocation and configuration selection has a substan-
tial contribution to Ekya’s gains in accuracy, especially when
constrained (i.e., fewer resources are provisioned).

Retraining window sensitivity analysis: Figure 10b eval-
uates the sensitivity of Ekya to the retraining window size.
Ekya is robust to different retraining window sizes. When
the retraining window size is too small (10 seconds), the ac-
curacy of Ekya is equivalent to no retraining accuracy due
to insufficient time and resources for retraining. As the win-
dow increases, Ekya’s performance quickly ramps up because
the thief scheduler is able to allocate resources to retraining.
As the retraining window size further increases Ekya’s per-
formance slowly starts moderately degrading because of the
inherent limitation in capacity of compressed models (§2.3).

Impact of scheduling granularity: A key parameter in
Ekya’s scheduling algorithm (§4.2) is the allocation quan-
tum ∆: it controls the runtime of the scheduling algorithm
and the granularity of resource allocation. In our sensitivity
analysis with 10 video streams, we see that increasing ∆ from
1.0 (coarse-grained; one full GPU) to 0.1 (fine-grained; frac-
tion of a GPU), increases the accuracy substantially by ∼ 8%.
Though the runtime also increases to 9.5 seconds, it is still a
tiny fraction (4.7%) of the retraining window (200s).

6.3 Effectiveness of micro-profiling

The absolute cost of micro-profiling is small; for our experi-
ments, micro-profiling takes 4.4 seconds for a 200s window.

Errors of microprofiled accuracy estimates: Ekya’s micro-
profiler estimates the accuracy of each configuration (§4.3) by
training it on a subset of the data for a small number of epochs.
To evaluate the micro-profiler’s estimates, we run it on all
configurations for 5 epochs and on 10% of the retraining data
from all streams of the Cityscapes dataset, and calculate the
estimation error against the retrained accuracies when trained

128 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Factor analysis (b) Sensitivity to retraining
window size.

Figure 10: (a) Component-wise impact of removing dynamic
resource allocation (50% allocation) or removing retraining con-
figuration adaptation (fixed Cfg 2). (b) Robustness of Ekya to a
wide range of retraining window values.

(a) Distribution of accuracy
estimation errors.

(b) Impact of an controlled error
ε to accuracy estimates.

Figure 11: Evaluation of microprofiling performance. (a) shows
the distribution of microprofiling’s actual estimation errors, and
(b) shows the robustness of Ekya’s performance against micro-
profiling’s estimation errors.

on 100% of the data for 5, 15 and 30 epochs. Figure 11a plots
the distribution of the errors in accuracy estimation and and
show that the micro-profiled estimates are largely unbiased
with an median absolute error of 5.8%.
Sensitivity to microprofiling estimation errors: Finally, we
test the impact of accuracy estimation errors (§4.3) on Ekya.
We add gaussian noise on top of the predicted retraining
accuracy when the microprofiler is queried. Figure 11b shows
that Ekya is robust to accuracy estimate errors: with upto 20%
error (which covers all errors in Figure 11a) in the profiler
prediction, the maximum accuracy drop is 3%.

6.4 Comparison with alternative designs

Ekya vs. Cloud-based retraining: One may upload a sub-
sampled video stream to the cloud, retrain the model, and
download the model back to the edge [40]. While this solution
is not an option for many deployments due to legal and privacy
stipulations [11, 87], we still evaluate this option as it lets
the edge servers focus on inference. Cloud-based solutions,
however, results in lower accuracy due to significant network
delays on the constrained networks typical of edges [81].

For example, consider 8 video streams running ResNet18
and a retraining window of 400 seconds. A HD (720p) video
stream at 4Mbps and 10% data sub-sampling (typical in our
experiments) amounts to 160Mb of training data per camera
per window. Uploading 160Mb for each of the 8 cameras over

Bandwidth (Mbps) Acc. Bandwidth Gap
Uplink Downlink Uplink Downlink

Cellular 5.1 17.5 68.5% 10.2× 3.8×
Satellite 8.5 15 69.2% 5.9× 4.4×

Cellular (2×) 10.2 35 71.2% 5.1× 1.9×
Ekya - - 77.8% - -

Table 3: Retraining in the cloud under different networks [58,
65, 81] versus using Ekya at the edge. Ekya achieves better accu-
racy without using expensive satellite and cellular links.

(a) Ekya vs. re-using cached
models over time

(b) Average gains in accuracy
across video streams

Figure 12: Ekya vs. re-using cached models. Compared to
cached-model selection techniques, models retrained with Ekya
maintain a consistently high accuracy, since it fully leverages the
latest training data and is thus more robust to data-drift.

a 4G uplink (5.1 Mbps [65]) and downloading the trained
ResNet18 models (398 Mb each [7]) over the 17.5 Mbps
downlink [65] takes 432 seconds (even excluding the model
retraining time), which already exceeds the retraining window.

To test on the Cityscapes dataset, we extend our simula-
tor (§5) to account for network delays during retraining, and
test with 8 videos and 4 GPUs. We use the conservative as-
sumption that retraining in the cloud is “instantaneous” (cloud
GPUs are powerful than edge GPUs). Table 3 lists the accura-
cies with cellular 4G links (both one and two subscriptions to
meet the 400s retraining window) and a satellite link, which
are both indicative of edge deployments [81].

For the cloud alternatives to match Ekya’s accuracy, we
will need to provision additional uplink capacity of 5×-10×
and downlink capacity of 2×-4× (of the already expensive
links). In summary, Ekya’s edge-based solution is better than
a cloud alternate for retraining in both accuracy and network
usage (Ekya sends no data out of the edge), all while provid-
ing privacy for the videos. However, when the edge-cloud
network has sufficient bandwidth, e.g., in an enterprise that is
provisioned with a private leased connection, then using the
cloud to retrain the models can be a viable design choice.
Ekya vs. Re-using pretrained models: An alternative to
continuous retraining is to cache pretrained models and reuse
them. We pre-train and cache a few tens of DNNs from ear-
lier windows of the Waymo dataset and test four heuristics
for selecting cached models. Class-distribution-based selec-
tion picks the cached DNN whose training data class distri-
bution has the closest Euclidean distance with the current
window’s data. Time-of-day-based selection picks the cached

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 129

DNN whose training data time matches the current window.
Object-count-based selection picks the cached DNN based on
similar count of objects. Location-based selection picks the
cached DNNs trained on the same city as the current window.

Figure 12a highlights the advantages of Ekya over differ-
ent model selection schemes. We find that since time-of-day-
based, object-count-based, and location-based model selection
techniques are agnostic to the class distributions of training
data of cached models, the selected cached models sometimes
do not cover all classes in the current window. Even if we take
class distribution into account when picking cached models,
there are still substantial discrepancies in the appearances
of objects between the current window and the history train-
ing data. For instance, object appearance can vary due to
pose variations, occlusion or different lighting conditions. In
Window 3 (Figure 12a), not only are certain classes underrep-
resented in the training data, but the lighting conditions are
also adverse. Figure 12b presents a box plot of the accuracy
difference between Ekya and model selection schemes, where
the edges of the box represent the first and third quartiles, the
waist is the median, the whiskers represent the maximum and
minimum values and the circles represent any outliers. Ekya’s
continuous retraining of models is robust to scene specific
data-drifts and achieves upto 26% higher mean accuracy.

7 Limitations and Discussion
Edge hierarchy with heterogeneous hardware. While
Ekya’s allocates GPU resources on a single edge, in practice,
deployments typically consist of a hierarchy of edge devices
[19]. For instance, 5G settings include an on-premise edge
cluster, followed by edge compute at cellular towers, and then
in the core network of the operator. The compute resources,
hardware (e.g., GPUs, Intel VPUs [1], and CPUs) and net-
work bandwidths change along the hierarchy. Thus, Ekya will
have to be extended along two aspects: (a) multi-resource
allocation to include both compute and the network in the
edge hierarchy; and (b) heterogeneity in edge hardware.

Privacy of video data. As explained in §2.1, privacy of
videos is important in real-world deployments, and Ekya’s
decision to retrain only on the edge device is well-suited
to achieving privacy. However, when we extend Ekya to a
hierarchy of edge clusters, care has to be taken to decide the
portions of the retraining that can happen on edge devices
that are not owned by the enterprise. Balancing the need for
privacy with resource efficiency is a subject for future work.

Generality beyond vision workloads. Ekya’s thief sched-
uler is generally applicable to DNN models since it only
requires that the resource-accuracy function be strictly in-
creasing wherein allocation of more resources to training
results in increasing accuracy. This property holds true for
most workloads (vision and language DNNs). However, when
this property does not hold, further work is needed to prevent
Ekya’s microprofiler from making erroneous estimations and
its thief scheduler from making sub-optimal allocations.

8 Related Work
1) ML training systems. For large scale scheduling of
training in the cloud, model and data parallel frameworks
[3, 10, 24, 50] and various resource schedulers [30, 31, 56, 69,
95, 97] have been developed. These systems, however, target
different objectives than Ekya, like maximizing parallelism,
fairness, or minimizing average job completion. Collaborative
training systems [18, 51] work on decentralized data on mo-
bile phones. They focus on coordinating the training between
edge and the cloud, and not on training alongside inference.
2) Video processing systems. Prior work has built low-cost,
high-accuracy and scalable video processing systems for
the edge and cloud [22, 32, 37]. VideoStorm investigates
quality-lag requirements in video queries [32]. NoScope ex-
ploits difference detectors and cascaded models to speedup
queries [22]. Focus uses low-cost models to index videos [34].
Chameleon exploits correlations in camera content to amor-
tize profiling costs [37]. Reducto [47] and DDS [25] seek
to reduce edge-to-cloud traffic by intelligent frame sampling
and video encoding. All of these works optimize only the
inference accuracy or the system/network costs of DNN in-
ference, unlike Ekya’s focus on retraining. More recently,
LiveNAS[41] deploys continuous retraining to update video
upscaling models, but focuses on efficiently allocating client-
server bandwidth to different subsamples of a single video
stream. Instead, Ekya focuses on GPU allocation for maxi-
mizing retrained accuracy across multiple video streams.
3) Hyper-parameter optimization. Efficient exploration of
hyper-parameters is crucial in training systems to find the
model with the best accuracy. Techniques range from simple
grid or random search [17], to more sophisticated approaches
using random forests [35], Bayesian optimization [85, 88],
probabilistic modelling [71], or non-stochastic infinite-armed
bandits [46]. Unlike the focus of these techniques on finding
the hyper-parameters with the highest accuracy, our focus is
on resource allocation. Further, we are focused on the infer-
ence accuracy over the retrained window, where producing
the best retrained model often turns out to be sub-optimal.
4) Continuous learning. Machine learning literature on con-
tinuous learning adapts models as new data comes in. A com-
mon approach used is transfer learning [33, 51, 72, 74]. Re-
search has also been conducted on handling catastrophic for-
getting [43, 79], using limited amount of training data [73, 89],
and dealing with class imbalance [16, 92]. Ekya builds atop
continuous learning techniques for its scheduling and imple-
mentation, to enable them in edge deployments.

9 Acknowledgements
We thank the NSDI reviewers and our shepherd, Minlan Yu,
for their invaluable feedback. This research is partly supported
by NSF (CCF-1730628, CNS-1901466), UChicago CERES
Center, a Google Faculty Research Award and gifts from
Amazon, Ant Group, Ericsson, Facebook, Futurewei, Google,
Intel, Microsoft, Nvidia, Scotiabank, Splunk and VMware.

130 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Azure percept. https://azure.microsoft.com/en

-us/services/azure-percept/.

[2] Google ai blog: Custom on-device ml models with
learn2compress. https://ai.googleblog.com/
2018/05/custom-on-device-ml-models.html.
(Accessed on 03/09/2021).

[3] MxNet: a flexible and efficient library for deep learning.
https://mxnet.apache.org/.

[4] Nvidia multi-process service. https://docs.nvidi
a.com/deploy/pdf/CUDA_Multi_Process_Servi
ce_Overview.pdf. (Accessed on 09/16/2020).

[5] Reducing edge compute cost for live video analytics.
https://techcommunity.microsoft.com/t5/i
nternet-of-things/live-video-analytics-w
ith-microsoft-rocket-for-reducing-edge/b
a-p/1522305. (Accessed on 03/09/2021).

[6] scipy.optimize.nnls — scipy v1.5.2 reference guide.
https://docs.scipy.org/doc/scipy/refer
ence/generated/scipy.optimize.nnls.html.
(Accessed on 09/17/2020).

[7] torchvision.models — pytorch 1.6.0 documentation. ht
tps://pytorch.org/docs/stable/torchvisio
n/models.html. (Accessed on 09/16/2020).

[8] A Comprehensive List of Hyperparameter Optimization
& Tuning Solutions. https://medium.com/@mikko
kotila/a-comprehensive-list-of-hyperpara
meter-optimization-tuning-solutions-88e0
67f19d9, 2018.

[9] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Fair allocation of multiple
resource types. In USENIX NSDI, 2011.

[10] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng. TensorFlow: A System
for Large-Scale Machine Learning. In USENIX OSDI,
2016.

[11] Achieving Compliant Data Residency and Security with
Azure.

[12] AI and Compute. https://openai.com/blog/ai-and-
compute/, 2018.

[13] G. Ananthanarayanan, V. Bahl, P. Bodík, K. Chintala-
pudi, M. Philipose, L. R. Sivalingam, and S. Sinha. Real-
time Video Analytics – the killer app for edge computing.
IEEE Computer, 2017.

[14] AWS Outposts. https://aws.amazon.com/outposts/.

[15] Azure Stack Edge. https://azure.microsoft.com/en-
us/services/databox/edge/.

[16] E. Belouadah and A. Popescu. IL2M: Class Incremental
Learning With Dual Memory. In IEEE ICCV, 2019.

[17] J. Bergstra and Y. Bengio. Random Search for Hyper-
Parameter Optimization. J. Mach. Learn. Res., 13:281–
305, 2012.

[18] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. In-
german, V. Ivanov, C. Kiddon, J. Konecný, S. Mazzoc-
chi, H. B. McMahan, T. V. Overveldt, D. Petrou, D. Ra-
mage, and J. Roselander. Towards Federated Learning
at Scale: System Design. In SysML, 2019.

[19] Chien-Chun Hung, Ganesh Ananthanarayanan, Peter
Bodik, Leana Golubchik, Minlan Yu, Paramvir Bahl,
Matthai Philipose. Videoedge: Processing camera
streams using hierarchical clusters. In ACM/IEEE SEC,
2018.

[20] CLIFFORD, M. J., PERRONS, R. K., ALI, S.
H.,ANDGRICE, T. A. Extracting Innovations: Mining,
Energy, and Technological Changein the Digital Age.
In CRC Press, 2018.

[21] cnn-benchmarks. https://github.com/jcjohnson/cnn-
benchmarks#resnet-101, 2017.

[22] D. Kang, J. Emmons, F. Abuzaid, P. Bailis and M. Za-
haria. Noscope: Optimizing neural network queries over
video at scale. In VLDB, 2017.

[23] D Maltoni, V Lomonaco. Continuous learning in single-
incremental-task scenarios. In Neural Networks, 2019.

[24] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin,
Q. V. Le, M. Z. Mao, M. Ranzato, A. W. Senior, P. A.
Tucker, K. Yang, and A. Y. Ng. Large Scale Distributed
Deep Networks. In NeurIPS, 2012.

[25] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang,
H. Hoffmann, and J. Jiang. Server-driven video stream-
ing for deep learning inference. In Proceedings of the
Annual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies,
architectures, and protocols for computer communica-
tion, pages 557–570, 2020.

[26] Edge Computing at Chick-fil-A.
https://medium.com/@cfatechblog/edge-computing-at-
chick-fil-a-7d67242675e2. 2019.

[27] Ganesh Ananthanarayanan, Victor Bahl, Yuanchao Shu,
Franz Loewenherz, Daniel Lai, Darcy Akers, Peiwei
Cao, Fan Xia, Jiangbo Zhang, Ashley Song. Traffic
Video Analytics – Case Study Report. 2019.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 131

https://azure.microsoft.com/en-us/services/azure-percept/
https://azure.microsoft.com/en-us/services/azure-percept/
https://ai.googleblog.com/2018/05/custom-on-device-ml-models.html
https://ai.googleblog.com/2018/05/custom-on-device-ml-models.html
https://mxnet.apache.org/
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://techcommunity.microsoft.com/t5/internet-of-things/live-video-analytics-with-microsoft-rocket-for-reducing-edge/ba-p/1522305
https://techcommunity.microsoft.com/t5/internet-of-things/live-video-analytics-with-microsoft-rocket-for-reducing-edge/ba-p/1522305
https://techcommunity.microsoft.com/t5/internet-of-things/live-video-analytics-with-microsoft-rocket-for-reducing-edge/ba-p/1522305
https://techcommunity.microsoft.com/t5/internet-of-things/live-video-analytics-with-microsoft-rocket-for-reducing-edge/ba-p/1522305
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.nnls.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.nnls.html
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
https://medium.com/@mikkokotila/a-comprehensive-list-of-hyperparameter-optimization-tuning-solutions-88e067f19d9
https://medium.com/@mikkokotila/a-comprehensive-list-of-hyperparameter-optimization-tuning-solutions-88e067f19d9
https://medium.com/@mikkokotila/a-comprehensive-list-of-hyperparameter-optimization-tuning-solutions-88e067f19d9
https://medium.com/@mikkokotila/a-comprehensive-list-of-hyperparameter-optimization-tuning-solutions-88e067f19d9

[28] GI Parisi, R Kemker, JL Part, C Kanan, S Wermter .
Continual lifelong learning with neural networks: A
review. In Neural Networks, 2019.

[29] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro,
and D. Sculley. Google vizier: A service for black-box
optimization. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’17, page 1487–1495, New York,
NY, USA, 2017. Association for Computing Machinery.

[30] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao,
and A. Akella. Multi-resource packing for cluster sched-
ulers. In ACM SIGCOMM, 2014.

[31] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon,
J. Qian, H. H. Liu, and C. Guo. Tiresias: A GPU cluster
manager for distributed deep learning. In USENIX NSDI,
2019.

[32] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodík,
Matthai Philipose, Victor Bahl, Michael Freedman. Live
video analytics at scale with approximation and delay-
tolerance. In USENIX NSDI, 2017.

[33] G. Hinton, O. Vinyals, and J. Dean. Distilling the Knowl-
edge in a Neural Network. In NeurIPS Deep Learning
and Representation Learning Workshop, 2015.

[34] K. Hsieh, G. Ananthanarayanan, P. Bodík, S. Venkatara-
man, P. Bahl, M. Philipose, P. B. Gibbons, and O. Mutlu.
Focus: Querying Large Video Datasets with Low La-
tency and Low Cost. In USENIX OSDI, 2018.

[35] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential
Model-Based Optimization for General Algorithm Con-
figuration. In Learning and Intelligent Optimization,
2011.

[36] Joseph Redmon, Ali Farhadi . Yolo9000: Better, faster,
stronger. In CVPR, 2017.

[37] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodík,
Siddhartha Sen, Ion Stoica. Chameleon: Scalable adap-
tation of video analytics. In ACM SIGCOMM, 2018.

[38] Junjue Wang, Ziqiang Feng, Shilpa George, Roger Iyen-
gar, Pillai Padmanabhan, Mahadev Satyanarayanan. To-
wards scalable edge-native applications. In ACM/IEEE
Symposium on Edge Computing, 2019.

[39] K He, X Zhang, S Ren, J Sun . Deep residual learning
for image recognition. In CVPR, 2016.

[40] M. Khani, P. Hamadanian, A. Nasr-Esfahany, and M. Al-
izadeh. Real-time video inference on edge de-
vices via adaptive model streaming. arXiv preprint
arXiv:2006.06628, 2020.

[41] J. Kim, Y. Jung, H. Yeo, J. Ye, and D. Han. Neural-
enhanced live streaming: Improving live video ingest
via online learning. In Proceedings of the Annual Con-
ference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communica-
tion, SIGCOMM ’20, page 107–125, New York, NY,
USA, 2020. Association for Computing Machinery.

[42] Konstantin Shmelkov, Cordelia Schmid, Karteek Ala-
hari . Incremental learning of object detectors without
catastrophic forgetting. In ICCV, 2017.

[43] J. Lee, J. Yoon, E. Yang, and S. J. Hwang. Lifelong
Learning with Dynamically Expandable Networks. In
ICLR, 2018.

[44] A. Li, O. Spyra, S. Perel, V. Dalibard, M. Jaderberg,
C. Gu, D. Budden, T. Harley, and P. Gupta. A gen-
eralized framework for population based training. In
Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’19, page 1791–1799, New York, NY, USA, 2019.
Association for Computing Machinery.

[45] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and
A. Talwalkar. Hyperband: A novel bandit-based ap-
proach to hyperparameter optimization. J. Mach. Learn.
Res., 18(1):6765–6816, Jan. 2017.

[46] L. Li, K. G. Jamieson, G. DeSalvo, A. Rostamizadeh,
and A. Talwalkar. Hyperband: A novel bandit-based ap-
proach to hyperparameter optimization. J. Mach. Learn.
Res., 18:185:1–185:52, 2017.

[47] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and
R. Netravali. Reducto: On-camera filtering for resource-
efficient real-time video analytics. In Proceedings of the
Annual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies,
architectures, and protocols for computer communica-
tion, pages 359–376, 2020.

[48] R. Liaw, R. Bhardwaj, L. Dunlap, Y. Zou, J. E. Gonzalez,
I. Stoica, and A. Tumanov. Hypersched: Dynamic re-
source reallocation for model development on a deadline.
In Proceedings of the ACM Symposium on Cloud Com-
puting, SoCC ’19, page 61–73, New York, NY, USA,
2019. Association for Computing Machinery.

[49] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed,
C.-Y. Fu, and A. C. Berg. Ssd: Single shot multibox
detector. In European Conference on Computer Vision,
pages 21–37. Springer, 2016.

132 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[50] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. M. Hellerstein. Distributed graphlab: A frame-
work for machine learning in the cloud. PVLDB,
5(8):716–727, 2012.

[51] Y. Lu, Y. Shu, X. Tan, Y. Liu, M. Zhou, Q. Chen, and
D. Pei. Collaborative learning between cloud and end
devices: an empirical study on location prediction. In
ACM/IEEE SEC, 2019.

[52] M McCloskey, NJ Cohen. Catastrophic interference in
connectionist networks: The sequential learning prob-
lem. In Psychology of learning and motivation, 1989.

[53] M Sandler, A Howard, Menglong Zhu, Andrey Zhmogi-
nov, Liang-Chieh Chen . Mobilenetv2: Inverted residu-
als and linear bottlenecks. In CVPR, 2018.

[54] M. J. Magazine and M. Chern. A note on approxima-
tion schemes for multidimensional knapsack problems.
Math. Oper. Res., 9(2), 1984.

[55] K. Mahajan, A. Balasubramanian, A. Singhvi,
S. Venkataraman, A. Akella, A. Phanishayee, and
S. Chawla. Themis: Fair and efficient GPU cluster
scheduling. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
289–304, Santa Clara, CA, Feb. 2020. USENIX
Association.

[56] K. Mahajan, A. Singhvi, A. Balasubramanian,
S. Venkataraman, A. Akella, A. Phanishayee, and
S. Chawla. Themis: Fair and efficient GPU cluster
scheduling for machine learning workloads. In USENIX
NSDI, 2020.

[57] Marius Cordts, Mohamed Omran, Sebastian Ramos,
Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,
Uwe Franke, Stefan Roth, and Bernt Schiele . The
cityscapes dataset for semantic urban scene understand-
ing. In CVPR, 2016.

[58] Measuring Fixed Broadband - Eighth Report,
FEDERAL COMMUNICATIONS COMMIS-
SION OFFICE OF ENGINEERING AND
TECHNOLOGY. https://www.fcc.gov/reports-
research/reports/measuring-broadband-
america/measuring-fixed-broadband-eighth-report.
2018.

[59] Microsoft-Rocket-Video-Analytics-Platform.
https://github.com/microsoft/Microsoft-Rocket-
Video-Analytics-Platform.

[60] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasude-
van, Mark Sandler, Andrew Howard, Quoc V. Le. Mnas-
net: Platform-aware neural architecture search for mo-
bile. In CVPR, 2019.

[61] Mingxing Tan, Quoc V. Le . Efficientnet: Rethinking
model scaling for convolutional neural networks. In
ICML, 2019.

[62] U. Misra, R. Liaw, L. Dunlap, R. Bhardwaj, K. Kan-
dasamy, J. E. Gonzalez, I. Stoica, and A. Tumanov. Rub-
berBand: Cloud-Based Hyperparameter Tuning, page
327–342. Association for Computing Machinery, New
York, NY, USA, 2021.

[63] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw,
E. Liang, M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and
I. Stoica. Ray: A distributed framework for emerging ai
applications. In Proceedings of the 13th USENIX Con-
ference on Operating Systems Design and Implemen-
tation, OSDI’18, page 561–577, USA, 2018. USENIX
Association.

[64] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian
Sun . Shufflenet v2: Practical guidelines for efficient
cnn architecture design. In ECCV, 2018.

[65] OPENSIGNAL. Mobile Network Experience Report .
https://www.opensignal.com/reports/2019/01/usa/mobile-
network-experience. 2019.

[66] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Rai-
son, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, and S. Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

[67] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo
Aila, Jan Kautz. Pruning convolutional neural networks
for resource efficient inference. In ICLR, 2017.

[68] Pei Sun and Henrik Kretzschmar and Xerxes Dotiwalla
and Aurelien Chouard and Vijaysai Patnaik and Paul
Tsui and James Guo and Yin Zhou and Yuning Chai and
Benjamin Caine and Vijay Vasudevan and Wei Han and
Jiquan Ngiam and Hang Zhao and Aleksei Timofeev
and Scott Ettinger and Maxim Krivokon and Amy Gao
and Aditya Joshi and Yu Zhang and Jonathon Shlens
and Zhifeng Chen and Dragomir Anguelov. Scalability
in perception for autonomous driving: Waymo open
dataset, 2019.

[69] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo. Opti-
mus: an efficient dynamic resource scheduler for deep
learning clusters. In ACM EuroSys, 2018.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 133

[70] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo. Optimus:
An efficient dynamic resource scheduler for deep learn-
ing clusters. In Proceedings of the Thirteenth EuroSys
Conference, EuroSys ’18, New York, NY, USA, 2018.
Association for Computing Machinery.

[71] J. Rasley, Y. He, F. Yan, O. Ruwase, and R. Fonseca. Hy-
perDrive: exploring hyperparameters with POP schedul-
ing. In ACM/IFIP/USENIX Middleware, 2017.

[72] Ravi Teja Mullapudi, Steven Chen, Keyi Zhang, Deva
Ramanan, Kayvon Fatahalian. Online model distillation
for efficient video inference. In ICCV, 2019.

[73] S. V. Ravuri and O. Vinyals. Classification accuracy
score for conditional generative models. 2019.

[74] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson.
CNN features off-the-shelf: an astounding baseline for
recognition. In IEEE CVPR Workshop, 2014.

[75] J. Redmon and A. Farhadi. Yolov3: An incremental
improvement, 2018.

[76] Residential landline and fixed broadband services .
https://www.ofcom.org.uk/__data/assets/pdf_file/0015/113640/landline-
broadband.pdf. 2019.

[77] RM French. Catastrophic forgetting in connectionist
networks. In Trends in cognitive sciences, 1999.

[78] H. Robbins. Some aspects of the sequential design of
experiments. Bulletin of the American Mathematical
Society, 58(5), 1952.

[79] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler
L. Hayes, and Christopher Kanan. Measuring catas-
trophic forgetting in neural networks. In AAAI, 2018.

[80] H. F. Scheduler. https://hadoop.apache.org/docs/r2.4.1/hadoop-
yarn/hadoop-yarn-site/FairScheduler.html.

[81] Shadi Noghabi, Landon Cox, Sharad Agarwal, Ganesh
Ananthanarayanan. The emerging landscape of edge-
computing. In ACM SIGMOBILE GetMobile, 2020.

[82] H. Shen, S. Han, M. Philipose, and A. Krishnamurthy.
Fast video classification via adaptive cascading of deep
models. In CVPR, 2017.

[83] Shivangi Srivastava, Maxim Berman, Matthew B.
Blaschko, Devis Tuia . Adaptive compression-based
lifelong learning. In BMVC, 2019.

[84] Si Young Jang, Yoonhyung Lee, Byoungheon Shin,
Dongman Lee, Dionisio Vendrell Jacinto . Application-
aware iot camera virtualization for video analytics edge
computing. In ACM/IEEE SEC, 2018.

[85] J. Snoek, H. Larochelle, and R. P. Adams. Practical
bayesian optimization of machine learning algorithms.
In NIPS, 2012.

[86] Song Han, Huizi Mao, William J. Dally . Accelerating
very deep convolutional networks for classification and
detection. In ICLR, 2017.

[87] Sweden Data Collection & Processing.

[88] K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. M. A.
Patwary, and R. P. Adams. Scalable Bayesian Optimiza-
tion Using Deep Neural Networks. In ICML, 2015.

[89] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, Christoph H. Lampert. icarl: Incremental classi-
fier and representation learning. In CVPR, 2017.

[90] The Future of Computing is Distributed.
https://www.datanami.com/2020/02/26/the-future-
of-computing-is-distributed/, 2020.

[91] H. Wang, A. Kembhavi, A. Farhadi, A. L. Yuille, and
M. Rastegari. Elastic: Improving cnns with dynamic
scaling policies. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
2258–2267, 2019.

[92] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and
Y. Fu. Large scale incremental learning. In IEEE CVPR,
2019.

[93] Xi Yin, Xiang Yu, Kihyuk Sohn, Xiaoming Liu and
Manmohan Chandraker. Feature transfer learning for
face recognition with under-represented data. In IEEE
CVPR, 2019.

[94] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun.
Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding.
In IEEE PAMI, 2016.

[95] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu,
N. Kwatra, Z. Han, P. Patel, X. Peng, H. Zhao, Q. Zhang,
F. Yang, and L. Zhou. Gandiva: Introspective Cluster
Scheduling for Deep Learning. In USENIX OSDI, 2018.

[96] Z. Li and D. Hoiem . Learning without forgetting. In
ECCV, 2016.

[97] H. Zhang, L. Stafman, A. Or, and M. J. Freedman.
SLAQ: quality-driven scheduling for distributed ma-
chine learning. In SoCC, 2017.

[98] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet:
An extremely efficient convolutional neural network for
mobile devices. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 6848–
6856, 2018.

134 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Notation Description
V Set of video streams
v A video stream (v ∈ V)
T A retraining window with duration ∥T∥
Γ Set of all retraining configurations
γ A retraining configuration (γ ∈ Γ)
Λ Set of all inference configurations
λ An inference configuration (λ ∈ Λ)
G Total number of GPUs
δ The unit for GPU resource allocation

AT (v,γ,λ,R ,I) Inference accuracy for video v for
given configurations and allocations

CT (v,γ,λ) Compute cost in GPU-time for video v for
given configurations and allocations

φvγλR I A set of binary variables (φvγλR I ∈ {0,1}).
φvγλR I = 1 iff we use retraining config γ,
inference config λ, R δ GPUs for retraining,
I δ GPUs for inference for video v

Table 4: Notations used in Ekya’s description.
[99] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang,

Boqing Gong, Stella X. Yu . Large-scale long-tailed
recognition in an open world. In CVPR, 2019.

A Thief Scheduler
A.1 Complexity Analysis.

Assuming all the AT (v,γ,λ,R ,I) values are known, the above
optimization problem can be reduced to a multi-dimensional
binary knapsack problem, a NP-hard problem [54]. Specif-
ically, the optimization problem is to pick binary options
(φvγλR I) to maximize overall accuracy while satisfying two
capacity constraints (the first and second constraints in Eq 1).
In practice, however, getting all the AT (v,γ,λ,R ,I) is infea-
sible because this requires training the edge DNN using all
retraining configurations and running inference using all the
retrained DNNs with all possible GPU allocations and infer-
ence configurations.

The uncertainty of AT (v,γ,λ,R ,I) resembles the multi-
armed bandits (MAB) problem [78] to maximize the expected

rewards given a limited number of trials for a set of options.
Our optimization problem is more challenging than MAB
for two reasons. First, unlike the MAB problem, the cost of
trials (CT (v,γ,λ)) varies significantly, and the optimal solution
may need to choose cheaper yet less rewarding options to
maximize the overall accuracy. Second, getting the reward
AT (v,γ,λ,R ,I) after each trial requires "ground truth" labels
that are obtained using the large golden model, which can
only be used judiciously on resource-scarce edges (§2.2).

In summary, our optimization problem is computationally
more complex than two fundamentally challenging problems
(multi-dimensional knapsack and multi-armed bandits).

Algorithm 2: PickConfigs
Data: Resource allocations in temp_alloc[], configurations

(Γ and Λ), retraining window T , videos V
Result: Chosen configs ∀v ∈V , average accuracy over T

1 chosen_accuracies[]←{}; chosen_configs[]←{};
2 for v in V [] do
3 infer_config_pool[] = Λ.where(resource_cost <

temp_alloc[v.inference_job] && accuracy ≥ aMIN);
4 infer_config = max(infer_config_pool, key=accuracy);
5 best_accuracy = 0;
6 for train_config in Γ do

/* Estimate accuracy of inference/training
config pair over retraining window */

7 accuracy = EstimateAccuracy(train_config,
infer_config, temp_alloc[v.training_job], T);

8 if accuracy > best_accuracy then
9 best_accuracy = accuracy;

10 best_train_config = train_config;

11 chosen_accuracies[v] = best_accuracy;
12 chosen_configs[v] = {infer_config, best_train_config};

13 return chosen_configs[], mean(chosen_accuracies[]);

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 135

	Introduction
	Continuous training on edge compute
	Edge Computing for Video Analytics
	Compressed DNN Models and Data drift
	Accuracy benefits of continuous learning

	Scheduling retraining and inference jointly
	Configuration diversity of retraining and inference
	Illustrative scheduling example

	Ekya: Solution Description
	Formulation of joint inference and retraining
	Thief Scheduler
	Performance estimation with micro-profiling

	Implementation and Experimental Setup
	Evaluation
	Overall improvements
	Understanding Ekya's improvements
	Effectiveness of micro-profiling
	Comparison with alternative designs

	Limitations and Discussion
	Related Work
	Acknowledgements
	Thief Scheduler
	Complexity Analysis.

