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ABSTRACT

Over the years, numerous learning methods have been put forward
to model and predict different user behaviors on end devices (e.g.,
ads click, location change, app launch). While the learn-then-deploy
approaches achieve promising results in many scenarios, data
heterogeneity and variability throw impediment in the way of
deploying pre-learned models to a large cluster of end devices.
On the other hand, learning on devices like smartphones suffers
from limited data, computing power and energy budget. This paper
proposes Colla, a collaborative learning approach for behavior
prediction that allows cloud and devices to learn collectively
and continuously. Colla finds a middle ground to build tailored
model for each device, leveraging local data and computation
resources to update the model, while at the same time exploits
cloud to aggregate and transfer device-learned knowledge across
the network to solve the cold-start problem and prevent over-
fitting. We fully implemented Colla with a multi-feature RNN
model on both smartphones and in cloud, and applied it to predict
user locations. Evaluation results based on large-scale real data
show that compared with training using centralized data, Colla
improves prediction accuracy by 21%. Our experiments also validate
the efficiency of Colla, showing that one overnight training
on a commodity smartphone can process one-year data from a
typical smartphone, at the cost of 2000mWh and few hundreds KB
communication overhead.
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1 INTRODUCTION

User behavior prediction on end devices (e.g., PCs, laptops,
smartphones) has long been a topic of interest in both system
and machine learning community. Researches have been carried
out to predict, for example, online user behaviors from weblogs [1],
word input [2] and app usages [3] from OS system logs, and
physical activities such as locations which user will visit [4] based
on data from portable sensing devices. These prediction results
benefit numerous third-party applications including personal digital
assistant, recommendation systems, advertising etc.

Despite a broad range of applications, the vast majority of
approaches used for user behavior prediction are data-driven - use
data mining and machine learning techniques to learn behavior
models from historical data [5–11]. More recently, Deep Neural
Networks (DNNs) have also been widely applied in behavior
modeling due to its great success in sequence prediction [4, 12, 13].
Albeit implementation differences, these approaches learn in a
centralized way (e.g., in the cloud) from labeled activities, and make
predictions on each end device (e.g., desktops and smartphones).

This classical learning paradigm has several downsides. First,
most designs focus on building one single model that achieves
the best performance on a given "mixed-user" dataset. However,
when deployed to end devices, the global model may perform
badly for some users due to the skewed data distributions. For
instance, mobility patterns of kids, college students and company
employees are distintive from each other. A natural solution is to
train different models for different groups of users. However, it
is non-trivial to determine the number of groups as well as the
consequent methodology of training and deployment. Second, to
achieve good performance on the "mixed-user" dataset, large model
capacity is needed, eventually increasing the resource usage on
end devices. Third, the learn-then-deploy paradigm does not take
runtime model execution results as well as newly-generated data
on end devices into account, failing to adapt to data drift over time.

This paper is driven by a simple question: can each end device
(e.g., smartphones) learn its own prediction model and improve
it over time? We believe the answer is yes. Our key insight is
that despite limited amount of data and skewed data distribution
on each device, in user behavior prediction, there exist common
patterns [14] cross users/devices due to the intrinsic correlations in
the physical space, hence allowing cloud and (multiple) end devices
to complement each other and learn collectively. For example, users
may install very different apps on their smartphones. But all these
apps come from the same app store, and Yelp, for instance, is more
likely to be launched around the same time (e.g., lunch time) on all
devices.
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Design of such a system, however, has to address several
challenges. The key is to enable effective and efficient local training,
allowing knowledge transfer from both cloud to device and device
to device, while at the same time, accommodating the huge gap
between the cloud and end devices in terms of compute power,
data variation, and energy budget. To realize the benefits of cloud-
device collaboration, we let the cloud side do the heavy lifting at
beginning to train an initial cloud model. Devices then take over
to perform incremental learning tasks using their local data, and
build their own models (a.k.a., client model) in a distributed way
for local inference. In the meantime, cloud serves as a sink node
that enables knowledge share across the network from time to time,
expediting learning progress on each device and alleviating the
impact of insufficient data and over-fitting.

Under this framework, we choose recurrent neural networks
(RNN) as a template predictive model, and further propose diverse
model architectures for cloud and end devices. Specifically, cloud
hosts a heavy model with more layers and a larger hidden layer
size, resulting in a larger capacity, while each device only maintains
a lightweight model tailored to local data and computing power. To
enable knowledge sharing between models, an update mechanism
using a novel dual knowledge distillation approach is devised. At
the client side, akin to classical knowledge distillation [15, 16],
device fine-tunes its model using both local ground truth (i.e., hard
labels) as well as soft labels created by the cloud model, whereas
on the cloud side, the cloud model is updated by distilling the
knowledge from lightweight device models1. To deal with data
variation, a model grouping mechanism is incorporated in the
cloud. It dynamically classifies device models, and updates the cloud
by generating multiple cloud models. This way, each client only
pulls one cloud model and hence client model benefits from peer
devices’ training process on correlated data. The cloud model is
also enhanced over time, providing a good baseline for new coming
devices thus solving the cold-start problem. In what follows, we
first talk about problem formulation and model design in §2, and
then elaborate knowledge transfer and model update in §3.

To explore the feasibility of applying collaborative learning to
user behavior prediction and quantify the benefits along multiple
dimensions, we take smartphone as an example and conduct a case
study on location prediction. Our empirically experiments over a
large-scale dataset collected from real users reveal the following key
observations. First, we found that, despite limited amount of data
and computation resources, end devices can still develop knowledge
of their mobility patterns promptly and efficiently by training
a neural network model. The key is to customize device model
architecture and leverage cloud to bootstrap the learning process.
Second, by exploiting knowledge distilled from the crowd, the
collaboratively-trained model achieves a higher prediction accuracy
than both centralized-trained model based on the aggregated data
and the client-trained models by individual devices, as well as state-
of-the-art baseline prediction methods. Third, prediction accuracy
increases with successive model updates with the help of model
grouping. Nevertheless, device variations are observed and the gain
from each update diminishes over time. Our main contributions in
the paper are as follows.

1Note that raw data uploading is not required.

• We revisit the problem of user behavior prediction, and
propose Colla, a collaborative learning framework that
allows devices and the cloud to learn collectively. In contrast
to the traditional learn-then-deploy paradigm, Colla allows
local devices to play an active role in learning their own data,
and wisely leverages the cloud and other devices for both
data and computational resources.

• We study the feasibility of Colla by applying a multi-
feature RNN network to the problems of smartphone-based
location prediction. A novel dual distillationmechanismwith
model customization and grouping mechanisms is proposed,
demonstrating superior prediction accuracy over the state-
of-the-art methods.

• We fully implement Colla on Android and Microsoft Azure,
and evaluate its performance on a large-scale real dataset.
Key observations and insights are reported, shedding light
on how collaborative learning would work for behavior
prediction in practice, and how a better learning system
can be designed with a swarm of networked devices.

2 USER BEHAVIOR PREDICTION: A

NON-COLLABORATIVE PERSPECTIVE

We set the context by formulating behavior prediction problems
from a non-collaborative perspective (§2.1). This represents a
class of classical prediction algorithms that run on centralized
data. Amidst these methods, RNN has demonstrated superior
performance recently due to its ability on handling sequence
dependence. Hence, in § 2.2, we first introduce an RNN with
Long Short-Term Memory (LSTM) unit, and use it as our template
model design. Note that although the design of RNN is not a key
contribution of this paper, it lays a foundation on the design of
Colla (§3), making it a generally applicable method for different
behavior predictions.

2.1 Problem Formulation

Sequence data is one of the most widely collected data on end
devices. The particular focus of this paper on sequence prediction
is to decide with given time series patterns – (randomly sampled)
data observations from the past – can we learn to make reasonable
prediction on future data, such as the next location. Formally, we
define the problem as follows.

Definition 2.1 (Sequence.). Sd is a sequence of samples qd1q
d
2 ...q

d
n

on device d , where qdi = (ti ,vi ), ti and vi ∈ V are the timestamp
and value of sample qdi . The time gap between ti and ti+1 may vary
between samples, and we mainly focus on the discrete sequence
where vi is a discrete value, such as location landmarks and
application ID.

Definition 2.2 (Sequence Prediction Problem.). Given sequence
data Sd , where d is from a set of end devices D = {d0, ...dk },
sequence prediction problem seeks to predict the next data point
qdn+1 for each device d ∈ D.

Note thatqdn+1 is a tuple of timestamp tn+1 and valuevn+1, which
makes prediction a complicated multivariate prediction problem.
In this study, the timestamp information is taken as the input of
RNN and the value vn+1 is the prediction value. Therefore, we can



vary input tn+1 to predict the next value vn+1 at any given time.
As we assume discrete values of a sequence, the prediction can be
regarded as a series of multiclass classification problem, with each
class represents the possible value of vn+1.

In § 2.2, we take location prediction as an example to describe
our model design. In this situation, the sequence data consists of
trajectory sequence which records the time and location ID of a
device. Note that in many applications like keyboard, location and
app launch prediction, ground truth values vn+1 at tn+1 can be
naturally obtained so there is no need for local data labeling.

2.2 Prediction Methods

RNNs has demonstrated outstanding performance recently due to
its advantages in sequence dependency modeling, generalization
ability, high flexibility and scalability [4, 12, 13]. Considering
contextual data such as time also provides valuable information for
user-behavior prediction, we propose a Multiple Feature RNN (M-
RNN) model. Figure 1 shows the structure of M-RNN. In mobility
prediction, the M-RNN model takes multiple sequence data streams
as input, and outputs a vector of multi-class probabilities with each
entry representing the probability of each possible location.

Location sequence

Concatenation Layer

LSTM LSTM LSTM LSTM

Linear

0.01 0.11 0.03 0.01 0.02 0.08
…

…

Class Probability

Embedding

Hour sequence Minute sequence

Weekday sequence Duration sequence Gap sequence

Embedding Embedding

Embedding Embedding Embedding

…

Figure 1: M-RNN architecture.

To leverage RNN, we first convert location ID and relevant time
information in trajectory sequence into a vector that is friendly to
neural networks. We borrow the idea of word embedding [17, 18],
and convert each location ID into an embeddingwith the embedding
lookup table. Five time-related features are extracted and converted
to discrete values here. In specific, Hour , Minute andWeekday
features represent the likelihood of seeing similar mobility patterns
in the temporal domain. Using timestamps of consecutive data
points that contain the same location ID, we extract Duration,
which represents how long a user stays at one location. We also
extract Gap, the time gap between two adjacent but different
locations, to characterize e.g., commute time. During inference,

we take Gap as an input to predict future locations at any given
time. Second, we transform the extracted information above into
discrete id features. The numbers of discrete ID for Hour ,Minute
andWeekday are 24, 60 and 7, respectively. Duration and Gap are
discretized into 144 values, with each one covering a time span of
10 minutes, and 144 in total covering 1440 minutes (i.e., one day). It
is the upper bound of the time span of a sequence we consider in
location prediction. Finally, we convert the trajectory sequence into
6 discrete ID sequences, each representing the Location sequence ,
Hour sequence , Minute sequence , Weekday sequence , Duration
sequence and Gap sequence .

After extraction, we get six sequences of features in total
(location sequence plus five time-related sequences). We use
location ID sequence in a 10-minutes time window (like a sentence
in natural language processing) to pre-train the embedding model
to convert the location ID into a dense vector. Similarly, at each
timestamp, we train other embeddings end-to-end, and concatenate
the embeddings of the six different ids as the input for the M-RNN
model. We use Xn to represent the embedding concatenation at the
nth step.

The M-RNN model contains an LSTM layer. We feed the output
hidden of the last step in the sequence to a fully connected layer f
and then map feature vector into a |V |-dimensional vector, where
|V | is the number of location IDs. In LSTM, h0 and c0 are the initial
hidden state and cell state, and

hn , cn = LSTM(Xn , (hn−1, cn−1)), (1)

which denotes the hidden state and cell state at nth step. In the fully
connected layer f , we use the locationn+1 = f (hn ) to represent
the future location at the n + 1 step. Since devices have different
visit locations, in Colla, each device customizes its local model by
setting an adaptive value ofV (§ 3.3). For example, a device sets the
size of its fully-connected layer to 25 when it has visited 25 unique
locations. If it collects 5 new location IDs, it will expand the size to
30.

In training, we split a sequence which has n elements into n −

1 training sequences. For instance, [id1, id2, id3] would be split
into [id1]->[id2] and [id1, id2]->[id3]. Finally, softmax operation is
performed to get output probability.

3 COLLA LEARNING FRAMEWORK

In this section, we describe the collaborative learning framework. It
consists of cloud and a set of end devices such as smartphones. We
illustrate the learning process using a star topology as an example
where each device connects directly to the cloud. In Colla, cloud
trains and maintains a large base model M whereas each device
holds a small client modelm customized for itself. We call the base
model on the cloud and the client model on a device cloud model

and client model, respectively.

3.1 Learning Flow

As shown in Figure 2, Colla learning process consists of the
following four stages.

Stage 1: Bootstrapping. The cloud trains the very first cloud model
from an initial dataset. This is done only once when the system is
deployed, e.g., when a keyboard application releases a new version
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Figure 2: Colla learning flow. Number in dashed red box represents learning stage. Model grouping not included.

that can learn a model to predict next word given the prefix or
previous word [19]. At this stage, it is reasonable to expect that the
cloud owns some data (e.g., anonymous user data or existing large
public dataset like word corpus) to initiate the learning process.

Stage 2: First pulling.When a new device di joins the system at
timeT0, it asks the cloud for the latest model. The cloud compresses
(see § 3.2 for more details) its latest cloud model M0 into a small
one and sends it to the device. di uses the compressed small model
as its first client modelmi

0 to perform inference in the coming time
period T = T1 −T0.

Stage 3: Client model update.After collecting a reasonable amount
of data or simply after a fixed time period T , device di pulls the
latest cloud modelM1 and merge it with the current client model
mi

0 through knowledge distillation, resulting in a new client model
mi

1. In the simplest form of distillation, the heavy cloud model is
used as the teacher model to fine-tune the client model (i.e., the
student model) over the local dataset (a.k.a., the transfer set). Thus,
client model is able to learn from both its local data and the cloud
model. § 3.3 will describe our knowledge distillation process in
detail. In § 5.4 and § 7, we also evaluate the cost of model training on
commodity smartphones, and list works that can further expedite
DNN execution on resource-constrained devices. After client model
mi

1 being generated, its parameters are pushed to the cloudwhile the
device uses the lightweight client modelmi

1 to perform inference
till time T2.

Stage 4: Cloud model update. Once receiving model parameters
from N of devices, cloud also updates its model. This is done again
by knowledge distillation, but with multiple teacher models (i.e., N
pushed models from end device di , i ∈ [1,N ]). Here the transfer
set includes all data available in the cloud. This stage results in a
new cloud model. Besides updating the base cloud model, Colla
also performs model grouping, dividing N device models into K
groups. Each model group is used to teach the base cloud model
into a new classified cloud model (not shown in Figure 2). Details
are described in § 3.2.

Client model update (Stage 3) and cloud model update (Stage 4)
happen repeatedly. For example, at timeT2, di pulls the latest cloud

modelM2 (orMk
2 if di was classified into group k) and distills the

knowledge into client modelmi
1 using the data collected during time

period T2 −T1, resulting a new client modelmi
2, and then pushes it

to the cloud. Similarly, cloud updates its model from time to time
using received models from devices. Since we perform distillation
to transfer knowledge from multiple devices to cloud as well as
from cloud to each device, we call the mechanism dual knowledge

distillation. Note that model updates in cloud and device may work
in an asynchronous way so as to adapt to various data collection
rates and different device constraints (e.g., energy).

3.2 Model Compression and Grouping

To reduce the overhead of running model inference on resource-
limited end devices and consider the behavior diversity of different
groups of users, Colla uses model compression and model
grouping.

Model compression. As end devices usually have limited memory
and computation resources, it is critical not to run a large model
on end devices. However, the cloud needs to use a large model
with enough capacity to combine the knowledge learned from all
devices. We propose to use model compression to balance the needs
of both the cloud and devices. To this end, the cloud compresses its
large base model into a small one through knowledge distillation
over the cloud dataset. As shown in Stage 2 in Figure 2, when a
new device comes, the cloud sends the compressed small model to
the device. The large model and the small model pair have different
sizes of LSTM units and different embedding sizes. Specifically,
for the large model, we set the size of LSTM unit to 128, and the
embedding size for all six different ID spaces to 32. In total, the
large M-RNN model contains 128, 796 parameters with a size of
503KB (128, 796 ∗ 4 Bytes). For the small model, we set the hidden
size of LSTM unit to 16 and the embedding size to 4, resulting in a
model with 11, 868 parameters and a size of 88KB (11, 868∗ 4 Bytes).
In § 5.4, we show the impacts of different sizes of embedding and
LSTM unit on prediction accuracy as well as execution cost on
mobile devices.



Model grouping. With growing number of users in Colla,
maintaining a single model in cloud may not achieve a satisfied
prediction accuracy for all users as different groups of users may
have very different behavior patterns. To solve this problem, instead
of using a one-fits-all cloud model, Colla splits up the cloud model
over time to serve different groups of users. Doing so requires
dividing devices into different groups where users in the same
group share similar behavior pattern. To this end, Colla conducts
model grouping in Stage 4 in Figure 2. After receiving N small
client models, cloud performs model inference using each of the N
models over the cloud dataset. Based on N output feature vectors,
we use the cross entropy between two feature vectors as the
distance of two models, and cluster models into K groups using the
Affinity Propagation [20]. In our current implementation, we take
a brute force approach and choose K with the highest Silhouette
Coefficient [21] from a set of {2, 3, 5, 10}.

Afterwards, cloud uses client models in each group to generate
cloud model Mk , k ∈ [1,K] per group, through cloud distillation
(see § 3.3) using the cloud dataset. This happens at every cloud
model update stage (i.e., Stage 4 in Figure 2) and generates a new
set of groups each time. The cloud records which client model
(and thus the corresponding device) belongs to which group. As a
result, when a device asks for the latest cloud model again (Stage
3 in Figure 2), the cloud will send back the classified cloud model
of the device rather than the base cloud model. Note that the base
cloud model is also updated using all the received client models and
thus new devices may always get the latest cloud model to start
with, before it goes to a group.

3.3 Model Update through Dual Distillation

Client and cloud model update are both critical in Colla which
transfer knowledge between cloud and different client models.
Knowledge distillation [15, 16] is widely used in machine learning
to transfer the knowledge from a heavy model (a.k.a., teacher
model) to a cheap model (a.k.a., student model) that is more suitable
for deployment on edge devices [16, 22–26]. Taking classification
problem as an example, for the training process without knowledge
distillation, the model generates class probabilities using softmax
function, and then matches them to one-hot ground truth labels
to calculate loss for back propagation. The major difference after
adding knowledge distillation is that, the student model not only
matches the output probabilities p of the input x to the true label
y, but also matches p to the class probabilities q predicted by the
teacher model on the same input x . Mathematically, distillation loss
is calculated as:

L = λL(y,p) + (1 − λ)L(q,p), (2)
where L(∗, ∗) is the loss function (i.e., Cross-Entropy or Kullback
Leibler (KL) Divergence), L(y,p) is the original loss term and L(q,p)
is the distillation loss term, λ is a hyper-parameter to trade off
the contribution of the two loss terms. It can be determined by
hyper-parameter search during training.

With the popularity of distillation, much of the work [27, 28] has
been proposed to allow two models teach each other. For instance,
Deep Mutual Learning [27] trains two models on the same dataset
simultaneously and makes them match the probability estimates of
each other. BAN [28], on the other hand, enables one network to

teach itself and generate new models via consecutive distillation. It
also adopts ensemble learning to aggregates predictions of these
models to generate a more reliable teacher model. Inspired by these
works, we extend basic knowledge distillation to a dual distillation
paradigm both in client and cloud. When cloud model teaches the
client model, devices can utilize the general knowledge from cloud
model to avoid overfitting despite the variations of local data. On
the contrary, cloud model benefits from the ensemble learning by
aggregating outputs from multiple client model.

Client Distillation. On the device side, knowledge is transferred
from cloud model to client model. Therefore, we use cloud model
as teacher model and conduct knowledge distillation on the data
available on each device. Follow Equation 2, the loss function of
client model i can be calculated as

Ldi = λdL(y
d
i ,p

d
i ) + (1 − λd )L(q

c ,pdi ), (3)

where superscript c and d denote the cloud side and device side.
ydi represents the label of the data on device i , pdi and qc represent
the output probabilities of the client model (student) and cloud
model (teacher) on device i , respectively. We use early stopping in
client distillation to avoid over-fitting on limited local data. Here we
assume local data is annotated (i.e., with known labels). This might
be impractical for tasks like object segmentation, but is trivial in
many applications like sequence prediction, where word inputs,
device locations, app launches are natural labels.

Cloud Distillation. Cloud distillation uses multiple client models
to teach the cloud model by fine-tuning it on the cloud dataset. It
aims to match the output probabilities of the cloud model to the
average of the softmax output of each client model. Similarly, we
have

Lc = λcL(y
c ,pc ) + (1 − λc )L(

1
N

∑
i ∈N

qdi ,p
c ), (4)

where the superscript c and d denote the cloud side and device side
respectively. yc represents hard labels of the cloud data, pc and qdi
represent the class probabilities of the cloud data by the cloudmodel
and client model i , respectively. This cloud distillation procedure
is the same for both the base cloud model and the classified group
models. The only difference is that the number of client models
used in the distillation is different.

Note that in Colla, devices have different values of V (i.e.,
customized FC layers) to cover diverse data classes on the client
side. Usually, client models have a smaller label size |V | than that
of the cloud model. In order to facilitate knowledge distillation that
requires the same label set between teacher and student model,
we modify the output probabilities of teacher model. Specifically,
in client distillation, only the output probabilities that matches to
existing labels of the client model are picked and re-normalized
as soft labels. In cloud distillation, the output probabilities of the
device model are padded with zeros to match the feature vector
size of the cloud model.

4 DATASET AND IMPLEMENTATION

To empirically evaluate Colla, we fully implement them on
Microsoft Azure cloud and Android smartphones, and conduct
trace-driven emulations using large-scale real data.



4.1 Dataset Description

Location prediction is conducted using WiFi AP scanning results
collected on a large university campus for four months (fromMarch
to June in 2016). In total, there are 120, 624, 600 WiFi scanning
records between 201, 041 devices and 2, 890 Cisco enterprise APs
deployed in 116 buildings on the campus. At peak time, there are
∼20, 000 devices concurrently connected to the campusWLAN. The
total number of unique devices is more than 60, 000 each day. On
average, 4.89 APs are scanned by each device per day.

Based on the hypothesis that APs close to each other are more
likely to be observed by the same mobile device, we group all 2, 890
APs into a smaller number of clusters (|V | = 368). Colla aims to
figure out which AP cluster each device is more likely to visit given
a future time t . To extract devices’ trajectory sequences, we slice
scanning records using a 10-minute time window. Device location
is set to the cluster ID that contains the most visited AP in each
time window. In data preprocessing, we filter out inactive devices
that have less than 10 active days per month – a day is active only
if it contains more than 5 unique location IDs. As a result, there
are 12540 devices left. The distributions of the number of active
days per month and the length of location sequences (i.e., number
of different locations) across all devices are shown in Figure 3.
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Figure 3: Location prediction data distribution.

4.2 Implementation

We implement the cloud part of Colla on Microsoft Azure
cloud. In specific, we use an Azure virtual machine with Intel
Xeon CPU@2.60GHz, 128GB memory and 3TB storage, 8 NVIDIA
Tesla P100 GPU cards (CUDA 9.0.0) with 16GB GPU memory for
experiments. The cloud part has three main components: data
storage, model training engine and communication interface. Model
structure is stored in a .json file and the weights are stored in a
.npy file (numpy array). Initial training data is stored in HDFS
format using Azure HDInsight. Model training is conducted using
Keras (v1.0.0) and Theano (v1.0.0). RESTful API is provided for the
communications between cloud and devices.

On the client side, we use Android smartphones and PyDroid
32, an IDE for Android featuring offline Python (v3.6) interpreter
and built-in C and C++ compiler. We install Keras, numpy, scipy
and Theano on Pydroid 3 using pip to enable model training with
data stored in SD card. Due to the lack of programming model for

2https://play.google.com/store/apps/details?id=ru.iiec.pydroid3

mobile GPUs3, we train the M-RNN model on smartphones using
CPU. Execution cost is presented in § 5.4.

In terms of training configurations, we use cross entropy as loss
function both for the true loss and distillation loss. Both λc and λd
in Equation 4 and Equation 3 are set to 0.5 after a hyperparameter
search. Batch size is set to 32 and we use Adam optimizer with
a learning rate of 0.1. We adopt cross validation with the ratio
of training/validation/test set setting to 16 : 4 : 5. Early stop
mechanism is adopted which terminates training if loss on the
validation set doesn’t increased in consecutive twenty epochs.

5 EVALUATION

We present evaluation results of Colla in this section, using the
dataset described in Section 4.1.

5.1 Experimental Settings

Colla: We use synchronized model update by default. Model
update cycle is set toT = 20 days. It means all devices pull the cloud
model at the end of each cycle, and upload (changed) parameters
right after their local models have been updated using local data
from the past period. Cloud periodically updates its model based
on the model parameters from all clients.

Model: As described in Section 3, Colla adopts different M-RNN
architectures in the cloud and on devices. The embedding layer of
the heavy M-RNNs are sized at 32 with hidden layer size of 128,
whereas the cheap model is sized at 4 with hidden layer size of 16.

Data: We select 10, 000 devices that contain at least 10 active days
per month, and evaluate Colla across the entire four months (i.e.,
March 2016 to June 2016). Particularly, we take a closer look at
collaboration performance between 100 most active devices (a.k.a.,
top-100). Data from the first month is used as initial training set for
the cloud. Because we set T = 20 days and extract the first month
as initial data, we split the data from mobility prediction (April 2016
to June 2016) into four parts. In evaluation, we use the current part
as training set and the next part as evaluation set. Thus, there are
three cycles in mobility prediction and two cycles in app launch
prediction.

Metrics: Trained models are evaluated on the data from the
subsequent cycle. We use following metrics to evaluate the
performance of Colla:

prediction accuracy: the portion of correct prediction to the total
predictions (i.e., top-1 accuracy)

weighted-precision and weighted-recall: Pr = wi ∗

∑|V |
i=1 T Pi∑|V |

i=1(T Pi+FPi )

and Re = wi ∗

∑|V |
i=1 T Pi∑|V |

i=1(T Pi+FNi )
, which are widely used in multi-class

classification [29]. wi =
∑
(i )∑|V |

i=1(i )
is the percentage of i in all data.

execution cost: local model inference time, training time and
communication cost of smartphones.

Since there is no well-developed Reception Operating Charac-
teristic (ROC) analysis for multi-class classification or prediction,
3Most smartphones feature GPUs from Qualcomm and Intel, which only focus on
speeding up inference/prediction but not training. We expect computing platforms
like CUDA will be released for smartphone GPU-based training in the near future.
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Figure 4: CDF of overall mobility prediction accuracy, precision and recall in three updates.
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Figure 5: CDF of mobility prediction accuracy, precision and recall with baseline methods.

we do not include AUC (Area under the ROC Curve) in the list of
measures.

5.2 End-to-end Prediction Performance

We first evaluate end-to-end performance between four different
methods at the end of the evaluation period. These four methods are
i) device-training (DT), where each device trains its own model from
scratch using its own data and never exchanges any information
with cloud nor other devices. ii) cloud-training (CT), where cloud
collects data from all devices periodically and trains a global model
(using heavy M-RNN) for prediction. i) and ii) are two extremes that
are commonly used in legacy prediction approaches where clients
are either treated independently or uniformly. iii) device-training
with warm-start (DT-ws), where each device pulls the very first
trained model from cloud, and utilizes local data to fine-tune it
at the beginning of each cycle. However, devices never exchange
parameters with cloud nor other devices after the first pulling. This
is the default approach to deploy models in transfer learning. iv)
Colla, where collaborative learning is adopted.

5.2.1 Top-100 devices with fixed size of initial dataset. Figure 4
shows the overall performances in three updates for mobility
prediction. We see that CT performs slightly better than both
DT and DT-ws, due to the extra data from other devices. In all
three figures, Colla performs the best among these methods,
demonstrating the effectiveness of collaborative learning. Some
detailed accuracy numbers are listed in Table 1. It can be seen
that the median accuracy of Colla is 0.51, 21.42% higher than
the second best approach (0.42 of DT-ws), and Colla yields the

best accuracy among all four methods on 68 devices (out of 100).
Another interesting finding is that the performance of DT is nearly
equal to DT-ws in Figure 4. Given DT-ws outperforms DT by 10%
in terms of median accuracy after the first update, this comparison
reveals that the help from warm start diminishes with successive
client model updates.

Table 1: Mobility prediction performance. Best percentage

means the percentage of the devices where the correspond-

ing method performs the best.

Method Best pct. Avg. acc. Med. acc.
DT 0.0% 0.40 0.40
CT 28.00% 0.40 0.39

DT-ws 4.00% 0.41 0.42
Colla 68.00% 0.47 0.51

Figure 5 also compares Colla with multiple state-of-the-art
methods including decision tree [6], Markov Chain model [7] and
RNN [4] after the first update. As can be seen, Colla with M-
RNN achieves a superior performance in all three metrics. For
instance, M-RNN exceeds RNN 116% (0.39 vs. 0.18) in terms of
median accuracy.

5.2.2 Random sampled devices with varying sizes of initial dataset.
In a more realistic setting, we sample 100 devices randomly from
all 100,00 devices, and extend the cloud initial dataset to top-104
devices.
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(b) Initial dataset with 104 devices

Figure 6: CDF of prediction accuracy on the random-100
devices in mobility prediction.

In Figure 6, we can see that model fine-tuning-based methods
(i.e., DT, DT-ws and Colla) obtain better performance when the
initial dataset is small. However, with a large initial dataset in the
cloud, CT catches up and outperforms DT and DT-ws. In the best
case, it achieves a median accuracy of 0.33 when the initial training
set contains 104 devices. Note that the gain of CT comes at the
cost of continuous local data uploading and heavy model exchange.
Execution cost of local inference using a heavy model could also be
prohibitively expensive (more experimental results in Section 5.4).
Compared with CT and DT-ws, Colla obtains the best prediction
accuracy on different initial datasets. In addition, between these
two figures, we can see it also benefits from the improvement of
the pre-trained cloud model, bringing median accuracy from 0.32
to 0.39.
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Figure 7: CDF of prediction accuracy using different meth-

ods in mobility prediction.

Figure 7 shows another perspective of Figure 6 by putting
together models trained in the same way but with different initial
data sizes. It is clearer that the larger data size we used for CT, the
better generalization capability the model can achieve, hence the
higher prediction accuracy.

5.3 Model Update Performance

In this section, we zoom in to examine gains from each model
update.

Figure 8 shows mobility prediction performance from top-
100 devices over four months (three updates). Compared with
steady improvements of Colla, DT-ws can hardly boost devices’
prediction capabilities over time. Since DT-ws purely relies on each
device’s own data, over-fittings are more likely to happen. However,
in Colla, devices take advantages of the cloud model during

subsequent local training, which can be seen as regularization to
prevent over-fitting from happening.

We found the continuous improvement from each model update
is largely brought by model grouping. From Figure 9(a), it can
be seen that without grouping, although prediction results get
better over time, the gain becomes marginal after three months.
We also investigate the performance of the Affinity Propagation
with Silhouette Coefficient to determine the number of groups K
(algorithm in Section 3.2). To this end, during cloud model update,
we cluster models into different numbers of groups K , and examine
their end-to-end prediction performance. For the top-100 devices,
we find clustering into two groups achieves the best overall accuracy
(Figure 9(b)) after the second update, matching with the rank of
Silhouette Coefficient (inside legend box in Figure 9(b)). It verifies
the effectiveness of grouping using model inference results.

Another component that has impacts on local model update is
the customization of FC layer. Here we compare Customized FC,
where each device dynamically expands the size of FC layer, against
Unified FC, where each device owns identical model architecture
(cheap model with a same size of the FC layer), on top-100 devices
in the first update. In Figure 10(a), we can see that Customized
FC strictly outperforms Unified FC in terms of accuracy. This can
be explained by the location class distribution of each user across
cycles - new locations are more likely to be seen in the first few
cycles (Figure 10(b)). Therefore, the gain from having a smaller FC
layer, thus a higher prediction confidence, outweighs prediction
errors from missing location classes in next cycle.

5.4 Execution Cost

Colla obtains aforementioned accuracy improvements at the cost
of periodical on-device model training and cloud model update.
Due to orders of magnitude less computing power and energy
budget, we focus on execution cost on smartphones. To obtain a
comprehensive understanding of runtime cost, we compare three
model update approaches. They are i) Same-Whole, where devices
share the same architectures (i.e., cheap M-RNN) and fine-tune the
whole network during update; ii) Same-FC, where devices share the
same architectures but only fine-tune the last fully connected layer;
iii) Customization, where devices gradually expand (and fine-tune)
the last FC layer with growing local observations. All other layers
are frozen during training. We conducted experiments on multiple
smartphones at different levels. Results from four M-RNNs with
different sizes (i.e., 4-16, 8-32, 16-64, 32-128) are presented, where,
4-16, for instance, means the embedding size is 4 and the hidden
size is 16. Sizes of these models are shown in Figure 11(a), where
Customization(n) denotes the n − th local update in customization
update approach.

We firstly examine the number of parameters to evaluate the
communication overhead. For down-link, all three model update
approaches send the same cloud model to the client side. However,
for the client-to-cloud communication, Same-FC and Customization
only need to upload the parameters of the fully connected layer
while Same-Whole needs to upload all parameters, since only
modified model parameters are required for cloud model update.
Figure 11(b) shows the communication overhead from top-100
devices. In our current implementation with client model sized
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Figure 8: CDF of top-100 devices’ performances during three updates in mobility prediction.
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the second update (Figure b).
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Figure 10: Performance of local model customization.

to 4-16, communication cost of one model update is as low as
520KB(130000 ∗ 4byte).

Another concern of running Colla on smartphones is the cost
of local inference and client model training. As inference time
can be affected by many factors (i.e., different optimizations on
matrix multiplication), we use FLOPS to measure the inference
cost. In Figure 11(c), compared with Same-FC and Same-Whole
(they have the same FLOPS due to the same model architecture),
Customization nearly halved inference computation. Due to the
smallest numbers of uploaded parameters, inference’s FLOPS and
model size, FC customization is proved to be the most efficient local
model update approach in iterative training.

Next, we dig deep to measure model training/inference time as
well as energy consumption. We randomly sampled a user from the

top-100 list, and use the total 293 data samples from the first cycle
(i.e., 20 days) to fine-tune the local model, whereas 224 samples
from the subsequent cycle are used for testing. Note that this user
is at 23% percentile of all users in terms of the size of local samples.
Figure 12(a) shows local model update time of four M-RNNs on five
smartphones. We find that customization has the least training time
among three updating approaches in all cases - it only takes 2.42
minutes on average to fine-tune the local model on a commodity
smartphone, which is order of magnitude smaller than fine-tuning
the whole model. Similar results are observed in Figure 12(b), where
one prediction execution only needs 133.5 milliseconds. This makes
it a feasible solution to turn location prediction as a component to
third party applications on end devices. In terms of different model
sizes, interestingly, we find model 8-32 needs the maximum time
to fine-tune on all five phones. This is because although 8-32 ranks
third in size, it demands much more training epochs to converge
(as shown in Figure 13). We also used a Monsoon Power Monitor
as a power supply for the smartphone, and tracks both runtime
current and voltage to calculate energy consumption (Table 2).
In summary, although training a large CNN model (e.g., ResNet-
152) is still prohibitively expensive for smartphones, we find the
cost of training a lightweight but effective RNN model is very
viable in terms of both time, energy and network consumption.
For applications like mobility prediction, one-hour training on a
commodity smartphone can handle data collected over one year,
at the cost of 2000 mWh energy consumption and few hundreds
KB communication overhead. Note that training can be further
accelerated using GPU, FPGA, and it can also be scheduled to run
at night when charger plugged in.

Table 2: Time (s) and energy consumption (mWh).

Model arch.
Huawei Mate 9 Pro Huawei Mate 10

Time Energy Time Energy

4 - 16 492.6 276.2 216.6 127.3

6 DISCUSSION

Despite promising results yielded by collaborative learning on
mobility prediction, there are several practical issues and limitations
of this study that warrant further investigation.
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Beyond location prediction. Colla can naturally be adapted to
user behavior predictions other than location changes. Taking app
launch prediction as another example, we can replace trajectory
sequence used in M-RNN (§ 2.2) with app launch sequence and

predict the next app to be launched using features like time,
previous app launch instances, battery level, CPU usage that might
have strong correlations with app launch behaviors.

On an app launch prediction dataset collected from 27 volunteers
using SherLock smartphone agent between January and March in
2016 [30], Colla achieved comparable results with Table 1, where
a 31.8% improvement of median prediction accuracy is achieved by
Colla over CT. The evaluation used same settings in Section 5.2 and
we constructed app launch sequence from the resource utilization
traces sampled every five seconds.

Table 3: App launch prediction performance.

Method Best pct. Avg. acc. Med. acc.
DT 22.2% 0.52 0.48
CT 22.2% 0.40 0.44

DT-ws 0.0% 0.47 0.46
Colla 55.6% 0.55 0.58

Learning process. Open questions on learning process also remain.
First, in our design, learning starts from a fixed amount of initial
data. There are still insights to be gained on the quality (e.g.,
diversity) of initial data that would be needed for a confident
general model. It is also interesting to explore the gains from extra
data uploading after bootstrapping. For instance, each new-coming
device could push certain amount of data for one time, or some
edge devices may be willing to upload data constantly but at a very
low frequency. Besides, the fixed architectures of client model may
be not suitable for incremental settings. When the capacity of client
model cannot handle the change of all new data, Colla needs to
tune the architecture of client model.

Selectively using device models for cloud model update could
not only brings cloud model a better generalization ability, but also
prevent cloud model from being corrupted by adversarial input. As
shown in Figure 14, our preliminary results from filtering out 30%
device-uploaded models with poor inference accuracy on the cloud
dataset shows an end-to-end median accuracy increase of 3.46%.
Extending Colla to CNNs is also an interesting subject to pursue.

With growing concern about data privacy, it is also worth
investigating how Colla can be designed in a privacy-preserving
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way. This is challenging given that prior works [31] have shown
that even the most innocuous aggregate, including the parameters
of ML models, can reveal information about the training sets.

7 RELATEDWORK

Distributed machine learning has been a hot topic in the machine
learning community due to the emerging big data and big models.
Model average [32–35] is a simple yet efficient technique which
iteratively averages the locally trained models and performs
parameter synchronization. Allreduce-based communication [36]
is also used for the gradient communication in the data parallelism
setting both for the single-machinemulti-GPUs andmulti-machines
multi-GPUs. A more flexible architecture for distributed machine
learning is parameter server [37–39], which uses dedicated
servers to synchronize model parameters and implement other
computation logic related to the optimization algorithms. However,
most previous work on distributed machine learning treat each
working node as a computing machine, receiving i.i.d. data and
model parameters, generating gradients or updated parameters
for synchronization. Endpoints in this work is not simply a
computing device, but also consuming trained model by itself with
local generated non i.i.d. training data. More recently, federate
learning [19, 40, 41] attempts to leverages local collected data to
train a global model. However, it fails to take into device diversity
into consideration and no model customization is allowed.

Knowledge distillation was first proposed to transfer the
knowledge from a cumbersome model (or ensemble of models)
to a single small model more suitable for deployment [15]. It has
been used since then in a wide range of tasks such as image
classification [16], neural machine translation [22, 23] and speech
recognition [16, 24]. The typical setting of knowledge distillation
transfers knowledge from a teacher model to a student model, while
there have been studies transferring knowledge cross all the models
in a collaborative way, in order to boost task execution performance
of all participants [25, 26]. Unlike CoDistillation [26] that uses the
same dataset to train all the models, or Mutual Learning [25] that
advocates an ensemble of students to learn collaboratively and
teach each other, dual distillation in Colla features a completely
different network where N different client models distill knowledge
from their own data and share it between each other with the help
of the cloud.

Researchers have been exploring various approaches to enable
deep learning on mobile and edge devices that have limited com-
puting power and energy budget. Those efforts including building
smaller models without sacrificing too much accuracy [42–44],
leveraging or building customized hardware for fast learning [45–
48], model compression to reduce resource consumption [49–
51], or system optimization to achieve a better resource-accuracy
tradeoff [52–54]. For example, DeepEar [42] proposes a special
model for audio sensing on smartphones in unconstrained acoustic
environments. DianNao [45] designs a dedicated ASIC to accelerate
ubiquitous machine learning. NestDNN [55] designs a dynamic
framework to choose the most suitable model when the resource
of application is changed. DeepX [49] leverages Runtime Layer
Compression (RLC) and Deep Architecture Decomposition (DAD)
to reduce resource usage. These learning practices on mobile edges
all focus on individual devices and thus are complementary to our
collaborative learning.

User behavior prediction has been studied for decades. It was
indicated that the potential average predictability in, for example,
human mobility can be as high as 93% [9, 56, 57]. Various methods
have been proposed to profile user behaviors and make predictions
on whereabouts, including Markov models [7, 8, 58–60], neural
networks [12, 61], Bayesian networks [62], random forest [63],
eigendecomposition [64] etc. Markovmodel, as well as its variations,
model the probability of future movements by building a transition
matrix between several locations based on past trajectories.
Given its success in speech and NLP, RNN is also proposed for
mobility prediction. For instance, Spatial Temporal Recurrent
Neural Networks (ST-RNN) is designed to model temporal and
spatial contexts [4]. Nevertheless, it only applies to continuous
spatial prediction, and assumes distances between location points
are known. More recently, DeepSense, a unified deep learning
framework for mobile sensing data is proposed by integrating
convolutional and recurrent neural network [65]. However, it
focuses on accommodating diverse sensor noise patterns with a
model trained remotely from uniform sampling data. Different from
existing work, we demonstrate the advantages of applying a more
general learning framework that combines intelligence from both
the cloud and edges on location prediction problem.

8 CONCLUSION

We propose Colla, a learning framework designed for user
behavior prediction by enabling end devices and a cloud to
learn from sequence data in a collaborative way. A cloud-client
collaboration mechanism is carefully designed to make the learning
approach flexible and scalable. In particular, we propose a novel dual
distillation method with model compression and model grouping
to empower the cloud to aggregate the knowledge learned from
end devices into a global cloud model and enable each device to
distill knowledge from the cloud model and build a customized
client model. We demonstrate the feasibility of the framework on
mobility prediction using amulti-feature RNN. Experimental results
on Azure and commodity smartphones with large-scale real data
show that Colla establishes effective device models in terms of
both prediction accuracy and execution cost.
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