Spatula: Efficient cross-camera video analytics on large camera networks

Samvit Jain, Xun Zhang*, Yuhao Zhou!, Ganesh Ananthanarayanan¥, Junchen Jiang?,
Yuanchao Shu¥, Paramvir Bahl¥, Joseph Gonzalez'

fUC Berkeley, University of Chicago, YMicrosoft Research

Abstract—Cameras are deployed at scale with the purpose
of searching and tracking objects of interest (e.g., a suspected
person) through the camera network on live videos. Such cross-
camera analytics is data and compute intensive, whose costs
grow with the number of cameras and time. We present Spat-
ula, a cost-efficient system that enables scaling cross-camera
analytics on edge compute boxes to large camera networks
by leveraging the spatial and temporal cross-camera correla-
tions. While such correlations have been used in computer
vision community, Spatula uses them to drastically reduce
the communication and computation costs by pruning search
space of a query identity (e.g., ignoring frames not correlated
with the query identity’s current position). Spatula provides
the first system substrate on which cross-camera analytics
applications can be built to efficiently harness the cross-camera
correlations that are abundant in large camera deployments.
Spatula reduces compute load by 8.3 x on an 8-camera dataset,
and by 23 x —86x on two datasets with hundreds of cameras
(simulated from real vehicle/pedestrian traces). We have also
implemented Spatula on a testbed of S AWS DeepLens cameras.

I. INTRODUCTION

The Internet of Things (IoT) has led to an explosion of data
sources and applications that rely on real-time inferences
over these data. In parallel, the inference models have
improved their accuracy, even surpassing humans for vision
tasks, but at increased resource costs. This work addresses
the systems challenges of scaling up IoT applications in the
specific context of live video analytics on a fleet of cameras.

Live video analytics over a fleet of camera feeds embod-
ies the above trends—massive data sources and network-
/compute-intensive analytics. Enterprises deploy large cam-
era networks and analyze camera feeds on their edge com-
pute clusters for public safety and business intelligence [13],
[31, [7], [36], [49], [67]. Chicago and London police analyze
30,000 and 12,000 camera streams in real time [6], [5].
These large camera networks enable many applications that
rely on cross-camera analytics, i.e., detecting, associating
and tracking queried “identities” in the live videos as they
move across cameras over time.

Scaling cross-camera analytics to large camera networks
poses a substantial system challenge. Cross-camera analytics
is computationally more challenging and network-intensive
than “stateless” single-camera vision queries (e.g., object
detection in one camera feed) as it entails discovering as-
sociations both across frames and across multiple cameras.

This shoots up the network and compute costs on the edge
clusters for analyzing the ever-increasing camera networks.

Prior work falls short of addressing this challenge. Recent
systems optimize the cost/accuracy tradeoffs of single-video
analytics via frame sampling and/or cascaded filters for
discarding frames [66], [64], [39], [42], [27], [30], but their
cost optimization of the analytics on one video stream is
independent of other streams. Thus, the compute/network
cost of cross-camera analytics grows with the number of
cameras over which a query identity is tracked, and with the
duration of the identity’s presence in the camera network.
Spatio-temporal correlations: Our main insight is that the
cost of cross-camera analytics can be drastically reduced by
exploiting the physical correlations of objects among the
camera streams. Spatial correlations indicate geographical
association between cameras — the probability that objects
seen in a source camera will move next to a particular desti-
nation camera’s field of view. Temporal correlations indicate
association between cameras over time — the probability
that objects seen in a source camera will move next to a
destination camera’s view at a particular time.

We develop Spatula, a cross-camera analytics system that
leverages spatio-temporal correlations to stream and run
cross-camera inference only on the set of cameras and
frames that are most likely to contain the query identity,
thereby decreasing both the network and compute costs
(see Figure 1). While some prior works use spatio-temporal
relationships between cameras to reduce the cost of the
profiling of the video analytics (i.e., to obtain the resource-
accuracy relationship for each video stream’s analytics), the
analytics on the live video itself is not optimized based on
cross-camera relationships and each video stream’s analytics
is independent of other videos [39]. Spatula, in contrast,
uses spatio-temporal correlations to limit the amount of data
sent and analyzed, thus making the costs proportional to
the number of cameras that the queried object appears in
at any point in time, and not the total number of deployed
cameras. A key property of large camera deployments is
that objects of interest, at any time, tend to appear only in
a small fraction of the cameras.

Challenges: Spatula highlights three challenges of applying
physical properties (spatio-temporal correlations) in the IoT
world to Al applications (cross-camera video analytics).
First, automatically obtaining spatio-temporal correlations
is expensive on unlabeled video data. Second, to maximize

s
S A
22
L SE—

Query identity -
‘ Iv’*

~

t t+1 t+4

Figure 1. Spatio-temporal correlations for video inference. The
cameras (on the y-axis) are plotted according to their mutual
distances, e.g., ¢2 and c3 are spatially closer than c2 and c4.
In searching for a query identity on c2 starting at ¢ (marked
in dark red), Spatula eliminates some cameras entirely (spatial
filtering), and searches first on cl, c2 and c3 (but not c4), finds
it in ¢3, and then searches only on c2 and c4 (but not c1 and
c3). Also, it avoids searching in any of the cameras at times
t+ 2 and t + 3 (temporal filtering).

the benefit of spatio-temporal correlations to various cross-
camera inference tasks, we need clean abstractions with
the necessary system supports. Finally, any spatio-temporal
profile is bound to have errors that will lead to missing
objects that must be rectified efficiently.

To tackle these challenges, Spatula operates in three
distinct phases. 1) In an offline profiling phase, it constructs
a cross-camera spatio-temporal correlation model from un-
labeled video data, which encodes the locality observed in
historical traffic patterns. This is an expensive one-time oper-
ation that requires detecting entities with an offline tracker
and then aggregating them into a profile of cross-camera
correlations. 2) At inference time, Spatula uses this spatio-
temporal model to filter out cameras that are not correlated
to the query identity’s current position (camera), and is thus
unlikely to contain its next instance. 3) Occasionally, this
filtering will cause Spatula to miss query detections. In these
cases, Spatula performs a fast-replay search on recently
filtered frames (that it stores), uncovers the missed query
instances, and gracefully recovers into its live search.
Evaluation Highlights: We evaluate Spatula using the well-
studied DukeMTMC videos [56] from the Duke campus. On
this 8-camera dataset, Spatula saves compute cost by 8.3x
and network cost by 5.5 over a correlation-agnostic base-
line (which is ~ 90% of the ideal savings). We also use GPS
trajectories and 130/600 simulated cameras in Porto [12]
and Beijing [71], and report savings of 23 x —86x. Addi-
tionally, Spatula largely improves precision, (e.g., 39% on
the DukeMTMC dataset), due to the significantly reduced
number of false positives. These savings come at a drop in
recall of only 1.6%. Finally, we have implemented Spatula
on a small testbed of 5 AWS DeepLens smart cameras [16].
Contributions: Our work makes three main contributions.
1) We quantify the potential for harnessing spatio-temporal
correlations in cross-camera video analytics.

2) We build a cross-camera video analytics system that
learns and applies spatio-temporal profiles on live videos.

3) We develop robust error-handling mechanisms to avoid
missed detections by storing and searching on recent videos.

II. MOTIVATION AND BACKGROUND

We explain some example cross-camera video analytics
applications (§II-A), the modules in their analytics pipelines
(§1I-B), and the compute models for video analytics (§II-C).

A. Cross-camera analytics applications

Large camera networks are installed in cities (such as
London, Beijing, and Chicago), transport facilities (traffic
intersections, airports), and enterprise campuses (corporate
offices, retail shops) [15], [1], [6], [67]. A common class
of applications in these camera deployments rely on re-
identifying and following objects (e.g., people or vehicles)
as they move across the views of the different cameras. The
focus is on following select “objects of interest” that are
typically provided by external entities (such as law enforce-
ment). A key characteristic of cross-camera applications is
that objects of interest occur only in a small fraction of the
cameras at any given time.
1) Public safety. Cross-camera video analytics helps localize
suspects after a security breach. For example, after a reported
incident of a person pulling out a gun inside an office
building, we will want to track that person (whose image can
be obtained from the camera footage) across the cameras in
the building while security personnel are dispatched.
Alternatively, after a major public attack (e.g., in a train),
law enforcement may track the accomplices of the identified
perpetrator, which may be obtained from police databases
that store people frequently associated with the perpetrator
[67]. Following these accomplices across the thousands of
cameras in the city allows for effective police apprehension.
2) Vehicle tracking in traffic cameras. In the U.S. and
Europe, AMBER alerts are raised on suspected child abduc-
tions [2]. The license plate and vehicle details are obtained
from investigations, and alerts are broadcast to citizens in
the area [2]. Tracking of the suspect’s vehicle across the
thousands of cameras on highways and city streets can keep
tabs on the suspect and victim, even as police intervene [49].
Likewise, when traffic police notice a vehicle speeding or
making a dangerous maneuver, they will note its details and
will be interested in tracking the vehicle as it moves across
the city using cross-camera analytics to assess its behavior.
3) Retail store cameras. Using computer vision to im-
prove shopping experience is a big thrust among retailers.
“Special” shoppers (e.g., loyal customers, or customers on
wheelchairs) are identified as they enter the store and cross-
camera analytics can be used to track them across the hun-
dreds of cameras in the store to make sure they are provided
timely attention (e.g., dispatching a store representative)
when necessary.

B. Video analytics pipelines

Video analytics pipelines for cross-camera applications (in
6II-A) typically consist of a series of modules on the decoded
frames of the video stream: (1) an object detection module,
which extracts and classifies objects of interest in each video
frame (e.g., people, gun), and (2) a re-identification module,
which given a query image (e.g., of a person), returns
positions of co-identical instances of the query in subsequent
frames (if present). Cross-camera analytics pipelines detect
objects in each camera, and track the objects across cameras.
Core to this pipeline is the vision primitive of identity re-
identification [53], [57], [41]. Given an image of a query
identity ¢, a re-identification (re-id) algorithm ranks every
image in a gallery G based on its feature distance to gq; the
lower the distance the higher the similarity. Typically, fea-
tures are the intermediate representation of a neural network
trained to associate instances of co-identical entities.

Object detection and re-id are the most challenging steps
of cross-camera video analytics — in terms of cost and
accuracy — and our work focuses on improving both.
Compute cost: Tracking in large camera networks is
computationally expensive. Tracking even a single object of
interest through a camera network, after an initial detection,
potentially requires analyzing every subsequent frame in
every camera (without heuristics for geographic pruning).!
Network cost: Transmitting video streams to the edge
cluster (or even cloud) for inference is network-intensive,
especially with the superlinear growth in high-resolution
videos [8]. Wi-Fi networks often have insufficient bandwidth
to transmit many video streams simultaneously. In out-
door deployments where cameras have cellular connectivity,
transmitting large data volumes increases the data costs [14].
Accuracy: Re-id is a non-trivial problem in computer
vision [69], [60], being particularly difficult in crowded
scenes and in large camera networks due to significant
differences in lighting and viewpoint across cameras. Often,
re-id models rely on weak signals (like clothing), thus
making it difficult with a large gallery of objects in a frame.

Our use of spatio-temporal correlations to prune the
video frames to analyze — i.e., run object detection and
re-id — significantly cuts down the inference space, thus
improving both cost as well as accuracy. While our focus
is on cross-camera applications, we also show how spatio-
temporal correlations improve the cost of even single-camera
applications (§V-D).

C. Compute and network model

Consistent with existing deployments [25], [31], [50], our
focus is on “edge” computation of video analytics with an
edge compute (e.g., Azure Stack Edge [4]) that is managed

1Optimizations using frame sampling in each camera stream [30], [42]
are orthogonal to our idea of using spatio-temporal correlations across
cameras, and we will quantify this aspect in our experiments in §IX-B.

by the enterprise (that has deployed the cameras). For
example, cameras in an office building are analyzed in an
edge cluster located in the same building. Traffic cameras in
a city are analyzed in the local traffic command center [47].
Videos are streamed to this edge cluster and the pipeline
modules (§II-B) including object detection and re-id are run
on this edge. Spatio-temporal pruning leads to lesser data
being transmitted to the edge (thus, reducing cellular data
costs or Wi-Fi interference). Such pruning also reduces the
compute load, enabling more video feeds to be processed
on the edge box or alternately reducing the resources to be
provisioned.

Our ideas also readily apply to a network of Al cameras
(as we implement and deploy in §VIII), each of which
consist of compute on-board, accelerators (e.g., GPUs), and
storage [16], [54]. Our techniques will enable each camera
to be provisioned with lower resources, thus lowering their
cost.

III. QUANTIFYING SPATIO-TEMPORAL CORRELATIONS

We analyze the potential of using spatio-temporal correla-
tions for cross-camera video analytics using the DukeMTMC
dataset [56]. We study cross-camera identity tracking that
involves tracking an object of interest, in real time, through
a camera network. In particular, given an instance of a query
identity ¢ (e.g., a person) flagged in camera c, at frame f, we
return all subsequent frames, across all cameras, in which
q appears as it moves around. We measure the reduction
in compute, i.e., the number of frames on which object
detection and re-id operations (§II-B) are executed.

A. Empirical analysis on cross-camera correlations

We now present an empirical study to quantify the cross-
camera correlations in the DukeMTMC dataset [56], one
of the most popular benchmarks in computer vision person
re-id and tracking [68], [61]. This quantification motivates
our design of a video analytics system that leverages such
correlations to improve the performance of cross-camera
analytics. The DukeMTMC dataset contains footage from
eight cameras placed on the Duke University campus (see
Figure 2), in an area with significant pedestrian traffic. The
field of views of the cameras do not mostly intersect, but
the cameras are placed close enough that people frequently
appear in multiple cameras, as is typical in camera deploy-
ments. The dataset contains over 2,700 unique identities
across 85 minutes of footage, recorded at 60 frames per
second [56].
1) Spatial correlation.

Cross-camera movement of individuals (or “traffic’’) demon-
strates a high degree of spatial correlation. Here, “traffic”
between cameras A and B is defined as the set of unique
individuals detected in camera A that are next detected in
camera B. (Note that a person that moves from A to B via
camera C' are excluded from the traffic count of A — B and

Figure 2. DukeMTMC camera network [56]. Marked regions

show the visual field of view of each camera.
@ C; C; C C; C;
n, Can, Cop, Cop Cop, Cop Co
MNe, Ma, Ma, " Ma, M, M, Me,. &,
270 58 5 g9 50 6 9 5 e

Camera 1- 0.0 00 00 14 0.0 05 29

Cameraz— 0.0 20.8 0.0 18.1 0.0 0.2 1.9 20.1

Camera 3- 0.0 0.0 9.6 02 05 00 9.8

Camera 4- 0.0 0.3 0.0 2.2 0.0 0.0 0.0 [pA

Camera 5- 4.6 ﬁ 10.3 1.4 0.0 @ 53 2.1 8.0

Camera6- 0.0 0.0 0.0 0.0 22.0 0.0 243 0.0 EEM

Camera7- 0.8 0.0 0.0 0.0 8.1 0.0 E 3.2

Camera 8-128 1.0 0.0 0.0 1.1 0.0 244 0.0

ur
o

(%) @bejuadiad died]

N
(=]

Source Camera

N
o

=
o

Destination Camera

Figure 3. Spatial correlations in the DukeMTMC dataset [56].
Cells display % of outbound traffic (individuals) from each
camera that appears at other cameras. Each row corresponds
to a particular source camera while each column to a desti-
nation camera; each row’s values add up to 100%. The final
column represents traffic that exits the camera network.

instead included in the A — C traffic count.) We find that
individuals seen at a camera c, move next to only a small
number of ¢,’s peer cameras. On the 8-camera DukeMTMC
dataset, only 1.9 of 7 potential peer cameras, on average,
receive even 5% of the total outbound traffic (or individuals)
from a given camera. Figure 3 shows the full pair-wise
spatial correlations.

Exploiting this insight can significantly reduce our work-
load, at little cost to accuracy, when searching for a query
identity ¢ (e.g., a person), that was first detected in camera
¢q. In comparison to a scheme that searches all n — 1 peers,
a smarter scheme that searches only those camera feeds
that receive at least 5% of the traffic from c,, reduces our
compute by 3.7x (we search only 1.9 cameras instead of
7, or 3.7x fewer frames to run object detection and re-id;
see §II-B), while sill capturing 95% of all detections in our
experiments.

An interesting aspect is that geographical proximity is not
necessarily a good spatial filter. Consider camera-5 (Figure
3), out of which a significant fraction of individuals (traffic)
go to cameras 2 and 6 but not to 7 or 8 even though they
are also spatially proximate. Likewise, little traffic moves

Camera 2 Camera 4
60 31-2 40 1-4
> 1252 124
2 3-2 30 13-4
o© 40 J4-2 44
=) 152 20 154
8 62 CJ6-4
L20 72 10 74
s s8-2 -4
-n JL ol
G50 100 150 200 % 50 100 150 200

Travel time (sec.) to destination camera

Figure 4. Temporal correlations in the DukeMTMC dataset [56]
(for two example destination cameras 2 and 4). Plots display
distribution of inter-camera travel times. Each plot corresponds
to traffic to the particular destination camera. Each colored line
represents a particular source camera.

out of camera 8 to cameras 2 and 5 even though these are
physically proximate. Thus, learning these patterns in a data-
driven fashion is a more robust approach (as we will quantify
in §IX-B). Data-driven learning also allows us to capture
asymmetry in the traffic patterns between cameras, for e.g.,
over 50% of traffic from camera-7 move to camera-6 but
less than 25% of traffic moves in the reverse direction from
camera-6 to 7.

2) Temporal correlation.

Cross-camera traffic also demonstrates a high degree of
temporal correlation. As Figure 4 shows, travel times of indi-
viduals between a particular source camera and a destination
camera in the DukeMTMC dataset are highly correlated.
This is explained by the fact that these are static cameras
and thus their pairwise distances are also static. Thus, for a
given pair of cameras, the travel times for people to leave the
feed of one camera and appear in the other camera are likely
to be clustered around a mean value. In the DukeMTMC
dataset, the average travel time between all camera pairs is
44.2s, and the standard deviation is only 10.3s (or only 23%
of the mean).

Exploiting temporal correlations, even on its own, has
the potential to provide compute savings. Given the task of
locating a given query identity g, first identified in camera c,,
in one of the n — 1 possible destination camera streams, we
can simply search each of the n—1 streams (ignoring spatial
correlations) but only for the time window when the query
identities are most likely to show up. We probabilistically
set the time window to be when at least 98% of the objects
appear. Such an approach has the potential to reduce our
compute load by 7.5x compared to a naive approach that
does not use such a (time) windowed search. This shows the
considerable potential in leveraging the tight distribution of
travel times of individuals between the views of the cameras.

B. Potential gains: spatial & temporal correlations

We now put together the gains due to spatial and temporal
filtering combined over a baseline that searches all n — 1
cameras (for a maximum duration). We assume ideal knowl-
edge about the spatial correlations between the cameras
as well as the temporal characteristics of travel times of

individuals between the views of the cameras. Using the
same thresholds as in §III-A, our analysis shows a potential
gain of 9.4 savings in the compute cost. This encouraging
potential for savings, even for a 8-camera dataset, motivates
us to both learn and exploit the spatio-temporal correlations
for cross-camera video analytics. As we will show in §IX,
Spatula achieves 8.3 reduction in compute cost, which is
~ 90% of the potential. In addition, the filtering of frames to
search also improves the precision of the results from 51%
for the baseline approach to 90% with Spatula, with little
drop in recall.

IV. SPATULA OVERVIEW

Building upon the strong spatial/temporal correlations across
cameras seen in §III, we develop Spatula, a resource-
efficient cross-camera analytics system that leverages the
correlations across cameras to reduce computing cost. As
depicted in Figure 5, Spatula provides two core functions
for cross-camera video analytics applications.

The spatio-temporal model (§V-A) describes the spatial
and temporal correlation between cameras, and can be
queried by applications. At a high level, one can query the
model with two cameras, ¢, and ¢4, and a time window, and
it will return how likely an object leaving cs will appear in
cq (i.e., the spatial correlation) and if it appears in cg how
likely it will appear within the time window (i.e., temporal
correlation).

The forward and replay analysis (§V-B and §V-C) perform
real-time inference on live videos (i.e., forward) as well as
inference on history video (i.e., replay). Both capabilities
operate jointly, and replay search is inherently needed for
spatio-temporal pruning: ignoring a camera due to weak
spatial/temporal correlation will inevitably introduce false
negatives that a baseline of searching all cameras would have
avoided, so Spatula provides the abstraction of replay search
to allow faster-than-real time search over some history
videos (that were ignored) for error correction.

In §V-B we demonstrate how cross-camera identity track-
ing (tracking an identity across cameras over time from a
known starting point) using spatio-temporal pruning. We
also show the generality of Spatula by applying spatio-
temporal pruning for cross-camera identity detection (finding
a queried identity, e.g., a lost child, in a large camera
deployment) in §V-D that is both an important single-camera
application as well as ties to the cross-camera identity
tracking by providing it the starting point for its tracking.

V. SPATIO-TEMPORAL CORRELATIONS IN SPATULA
We now describe Spatula’s solution for leveraging spatio-
temporal correlations in cross-camera video analytics.

A. Defining the spatio-temporal model

Spatula builds upon the cross-camera correlations in §III.

Spatula Applications

Cross-camera identity tracking (§5.2,5.3)
Multi-camera identity detection (§5.4)

Spatio-temporal Reaitime Replay analysis
Spatula model (§5.1) inference (85.5)
Shared f
functions

Model profiling (§6)

Cameras & underlying
compute resources

Figure 5. Architecture of Spatula.

1) Spatial correlations capture associations between camera
pairs arising from the movement of traffic (individuals) be-
tween the views of the camera streams. The degree of spatial
correlation .S between two cameras c;, ¢q4 is quantified by the
ratio of: (a) the number of individuals leaving the source
camera’s stream for the destination camera, n(cs, cg), to (b)
the total number of entities leaving the source camera:

n(cs, cq)

2 m(Cs, ¢i)

When a large fraction of individuals that leave cg’s view
are seen next in a camera c;, we say that c¢; is highly
correlated to camera cg;. Note that S may be asymmetric
(as seen in our analysis in §III-Al); camera ¢, may not
be highly correlated with camera c;, even if the converse is
true. In cross-camera identity search, Spatula exploits spatial
correlations by prioritizing cameras that are highly correlated
to the last camera where the queried identity ¢ was spot
(called query camera).

2) Temporal correlations capture associations between
camera pairs over time. If a large fraction of the traffic
leaving camera cs for camera ¢y arrives within durations ¢,
and %9, then camera c, is said to be highly correlated in the
time window [tq,t2] to camera cs. The degree of temporal
correlation T' between two cameras c;, cq during a window
[t1,t2] is the ratio of: (a) individuals reaching ¢4 from c,
within a duration window [t1,%2] to (b) total individuals
reaching ¢4 from cg:

S(cs,cq) =

n<csa Cd, [th tQ])

T(C.€7Cd7 [tlatQ]) = n(c Cd)

Indeed, cameras in real-world deployments have substan-
tial temporal correlation (§I1I-A2). In cross-camera identity
search, Spatula exploits temporal correlations by prioritizing
the fime window [t1,t2] in which a destination camera is
most correlated with the query camera.

Spatio-temporal model Given a source camera cg, the
current frame index fg,, (which serves as a timestamp),
and a destination camera cq4, our proposed spatio-temporal
model M outputs t rue if ¢4 is both spatially and temporally
correlated with ¢g at f.., and false otherwise. In our

History traffic Cq = C1

M(Cq,C1, fyrr) = 1for for € [0,10]sec
fCU"
10

Spatial

¢!
pruning e

. t

[\

M(Cq,C2, foyrr) = 1for foyr € [10,20]sec
A

I
fQ(ZJ) \\fcm . Tempf)ral
10 20 o pruning

M(Cq! C3, fcurr) =0, Vfcurr

C] f

%%

Figure 6. Spatio-temporal correlations between camera Cq
(where the object was first spotted) and three other cameras.
C1 and C2 have spatial and temporal correlations with Cq (in
different time intervals). C1 is correlated with Cq in the times
[0, 10] but not otherwise; and C2 is correlated with Cq only
in times [10, 20]. C3 is not correlated with Cq.

description, the frame index f,, serves the role of the
timestamp.

The thresholds for being spatially correlated with cg,
and temporally correlated with cs at time f., are model
parameters. As an example, we may first wish to search
cameras receiving at least Spresn = 5% of traffic from cs,
during the time window containing the first 1 —tyesn = 98%
of traffic from c,. These parameter settings exclude both
outlier cameras (cameras receiving less than 5% of the traffic
from c,) and outlier frames (frames containing the last 2%
of the traffic from c,). Defining syresh and iresh as @ percent
of traffic (or individuals) directly translates to precision and
recall of the entities being tracked. M is formally defined
as:

1, S(Cs>cd) > Sthresh

and
T(CS7 Cd, [f07 fcuer <1 — tinresh
0, otherwise

M(Csa Cd, fcurr) =

ey

Here fj is the frame index at which the first historical arrival
at ¢q from ¢, was recorded. The reason of having fj is
because it takes time to travel from c; to ¢4, and cost savings
can be maximized by not searching on frames while objects
are moving between cameras. As a result, our temporal filter
checks if the volume of historical traffic that arrived at ¢4
between [fo, feur| s less than 1 — #yeeqn of the total traffic.
This ensures that f., falls in the “dense” part of the travel
time distribution, where we are likely to find q. (Note that we
must check that four > fo. When for < fo, M is false.)
Figure 6 shows an illustration for using M with fy values
for each destination camera. (We construct the model M in
§VL)

Search hits and misses: Leveraging the spatio-temporal
model M allows us to explore the subset of the inference

Algorithm 1 Tracking with the spatio-temporal model

1: input: video feeds {V.} for camera c,
2: sp_corr(cs, cq) — {true, false}

3: tp_corr(cs, ca, f) — {true, false}
4: for query (q, fq,cq) € Q do

5 Grear = features(q) > extract image features
6: for = fq+1 > init current frame index
7: M, =] > init query match array
8: phase =1 > start phase one
9: while (four — fy) < exit_t do

10: Veorr = filter(sp_corr, tp_corr, ¢q, feurr, V')

11: frames = get_frames(Veorr, fourr

12: gallery = extract_entities(frames)

13: ranked = rank_reid(ggea:, gallery)

14: if ranked[0][dist] < match_thresh then

15: M, = append (Mg, ranked[0][img])

16: greac = update_rep(geat, ranked[0] [feat])

17: f q — fcurr

18: phase = 1 > reset to phase one
19: break

20: Seurr = increment(feur)

21: if phase = 1 and T'(cs, ca, [fo, feurr]) > 1 —twmresn then

22: for = fqg+1 > reset frame index

23: sp_corr = relax(sp_corr)

24: tp_corr = relax(tp_corr)

25: phase = 2 > start phase two

26: output: matched detections {M,}

space (camera streams and time windows) that is most
likely to contain q. A “hit” reduces cost, as we avoid
searching the entire space. On the (rare) misses, we go
back and find ¢ in the past video frames over all the
camera streams we had filtered out using M. In §V-C, we
will explain how we handle misses and mitigate the delay
it introduces. Maximizing the cost savings from hits and
minimizing the miss-induced delays is a tradeoff controlled
by the parameters Siyesh and fipresh-

B. Cross-camera identity tracking

Algorithm 1 explains our cross-camera identity tracking. In
cross-camera identity tracking, the input consists of a query
image ¢, last seen in frame f; on camera c,. (If the input
does not contain the frame f,, we can first run the next
application, multi-camera identity detection, to locate it.)
The goal is to flag all subsequent frames, on all cameras,
where ¢ appears. Note that ¢ can appear again on the same
camera (c = c¢,), different cameras (¢ # ¢;), or else exit
the network altogether. For each query ¢, we begin by
extracting image features g, and initializing an empty array
of discovered matches M. For each frame, as explained in
8II-B, we: (1) extract individuals (objects) from each frame
using an object detection model, (2) rank the objects based
on their feature similarity distance to ¢ using a re-id model
(8II-B).

If the top-ranked detection is within a threshold
(match_thresh in Algorithm 1), i.e., a co-identical instance

is found by the re-id model, we add the detection to our
array of matches M, update our query representation Gsea
to incorporate the features of the new instance of ¢, update
the query frame index f; to feur, and proceed with tracking
q; lines 14-18. We continue searching until the gap between
the last detected instance of ¢ and our current frame index
exceeds a pre-defined exir threshold (defined as exit_t in
Algorithm 1). At this point, we conclude that ¢ must have
exited the camera network, and cease tracking q.

We apply the spatio-temporal model to cross-camera
tracking as follows (marked in blue in Algorithm 1).
The model M has two filters (lines 2 and 3): (1)
spatial_corr(cs, ¢4), which given a source camera ¢5 and a
destination camera cg returns true if cq4 is correlated with
¢s, and (2) temporal_corr(cs, ¢4, f), which given a source
camera cg, a destination camera cg, and a frame index f,
returns true if ¢4 is correlated with ¢4 at f. At query time,
these two functions are passed to the filter function (line
10), which given a list of video feeds V/, returns the subset
of cameras (V) that are both spatially and temporally
correlated to cq at four.

Applying filter reduces the inference search space, at each
frame step four, from all entity detections at f.,,; on every
camera to all entity detections at f.,, on correlated cameras.
This allows us to abstain from running object detection and
feature extraction models on non-correlated cameras, and
reduces the size of the re-id gallery in the ranking step. If
filter in Algorithm 1 were applied to the example in Figure
6, the set Voo would be only C1 in in the times [0, 10],
only C2 in the times [10, 20], and null set at all other times.

C. Handling pruning errors via replay search

Spatio-temporal pruning may cause a drop in recall: missing
actual occurrences of the query identity g, which would be
discovered by a baseline that exhaustively searches all the
frames of all the cameras. When tracking on the spatially
filtered cameras does not discover g after exit_t time (line
22 in Algorithm 1), we will initiate a “second pass” through
the video frames that we skipped; we call this replay search.
Replay subset: We initiate replay search on a broader subset
of cameras and timespans. In particular, we go back to the
last camera that the queried identity was seen, ¢, (i.e., restart
the tracking procedure from four = f; + 1, line 23, as
fq was the last frame the queried object was seen), and
find all the correlated cameras and time windows that ¢,
is correlated with using the spatio-temporal profile but now
with thresholds sgresh and tiesn decreased by a factor of 10.
If we do discover an instance of ¢, we proceed with tracking
from that detection, initiating a new phase one in Algorithm
1. If we still do not, we search the entire camera network
until the exit threshold.

Note that despite relaxing Sgresh and tgmresh, the cameras
over which we perform replay search will still be only a
small fraction of the overall camera network and for only a

small duration in the past. This is because the vast majority
of cameras (in a large deployment) will have never seen
traffic (individuals) from ¢,. Implicit to replay search is also
the ability to store videos in the past. However, this is only
for the last few minutes (few 100 MBs even for HD videos).
Replay delay: Searching on videos from the past indicates
that we are lagging behind tracking the identity. Thus, it is
desirable to speed up the search process. Spatula processes
the historical videos at faster-than-real-time.

a) Skip frame mode — Process the historical videos at
lower frame rate (via frame sampling) and lower resolution
(via frame downsizing) to increase processing rate but po-
tentially lower accuracy. We use offline profiling [64], [66]
to decide the frame rates and resolution to limit the drop in
accuracy.

b) Parallelism mode — Process the historical videos by
parallelizing them across other cameras or edge machines
(depending on the setup; §II-C) that are idle. As explained
above, the broader replay search is likely still only a small
subset of all the videos, so spare resources will be available.

We implement both solutions and investigate their trade-
offs on accuracy and delay in our evaluation (§IX-D).

D. Multi-camera identity detection

While our focus thus far has been on cross-camera video
analytics, spatio-temporal models can also be applied to
reduce the cost of single-camera analytics, e.g., find a
lost baby or lost car in a mall’s or city’s cameras. This
involves running object detectors independently on each
camera stream, and is expensive for large deployments.
In this section, we apply our cross-camera spatio-temporal
model (§V-A) to such single-camera “identity detection”.
Not only is it an application of wide relevance on its own,
it also ties closely with cross-camera tracking (§V-B) to
provide it the starting point of the query ¢ (which we have
been calling as camera c,).

Identity detection refers to finding a given identity ¢ (e.g.,
an image of a lost baby) in many camera streams. The
intuition why the spatio-temporal model helps is that if ¢
is not found in camera C1 and the spatio-temporal model
indicates that most objects appearing in camera C2 have
recently appeared in Cl, then camera C2 is unlikely to
contain ¢. In other words, the model allows to prune the
cameras and time windows in which q is unlikely to be found
based on when and where ¢ was not found earlier. At any
point of time, we maintain a probability for each camera to
contain an object that has not been “scanned” (i.e., not found
in the camera feeds we have searched so far). The cameras
with high values of this probability will be prioritized in the
search.

We define P, ,, to be the probability of any unscanned
object (i.e., an object that did not appear in any camera
when it was searched) appearing in camera c in time window
w. Thus, the greater the P, ,, is, the more likely searching

camera c¢ in window w would yield a “hit”. While we omit
the details for calculating P.,, at any point in time, we
search the camera c¢ and time window w whose P, ,, is
greater than a threshold 6. If the identity is found, the search
ends.

V1. PROFILING SPATIO-TEMPORAL CORRELATIONS

A final piece of Spatula system is the profiling and main-
taining of the spatio-temporal correlations. Spatula takes an
approach that builds on standard techniques from computer
vision. Before Spatula is deployed, we first use a multi-
target, multi-camera (MTMC) tracker to label entities in a
dataset of historical video, collected from the same camera
deployment on which the live tracking is executed. Logi-
cally, such a tracker will return for each detected entity in-
stance 4 a tuple, (c¢;, fi, e;), containing the camera identifier
¢;, frame index f;, and entity identifier e; for the detection,
respectively.

Using these, we compute n(cs, cq, [t1, t2]), the number of
entities leaving any source camera cg for any destination
camera ¢y within a time [tq,t5]. These quantities translate
directly to our spatio-temporal model M in Eq. 1 (see §V-A).

Using MTMC trackers to profile spatio-temporal correla-
tions in the history video is computationally expensive, and
can neutralize the savings from the search pruning. This is
because unlike single-target tracking, a MTMC tracker will
track all entities in the dataset. To limit profiling overheads,
we explore the trade-off between the robustness of offline
profiling and the accuracy of subsequent single-target cross-
camera tracking using the generated profile. In particular,
the profiling cost can be reduced by labeling fewer frames
with the MTMC tracker (e.g., by choosing a subset of the
data to label). At first glance, this will likely reduce the
search accuracy as the spatio-temporal correlations is based
on a sampled subset of entities. In practice, however, we
found that despite labeling fewer frames for the profiling,
our precision and recall drops are only mild, and thus our
solution of labeling fewer frames significantly reduces the
profiling cost without impacting accuracy. We evaluate this
in §IX-E.

VII. LIMITATIONS & FUTURE WORK

We acknowledge two main limitations in Spatula’s design.

1) The spatio-temporal model in §V-A has likelihood
thresholds, that makes it vulnerable to missing “outliers”,
i.e., the rare spatial movement patterns or temporal anoma-
lies in the movement speeds. While replay search (§V-C)
detects such instances and is largely able to correct them, it
is not perfect. Ensuring that no outliers are missed is part
of future work.

2) Spatio-temporal correlations may change with time
(e.g., a road work may block a busy segment, which can
reduce the correlation between two cameras). Spatula can
trigger re-profiling (§VI) by keeping track of the number

oot =, == Wiloswon
Camera-S

uv e

Figure 7. Spatula testbed at AnonCampus w1th ﬁve AWS
DeepLens smart cameras. The red lines show walkways in the
building, and we learn the spatio-temporal correlation of people
traversing the walkways. The controller and all the cameras
exchange “trigger” and ‘“feedback” messages.

of objects that are missed in the normal pruned search
but detected in the subsequent replay search (i.e., in an
“uncorrelated” time interval or camera), thus reacting to
spikes in pruning errors.

VIII. SYSTEM IMPLEMENTATION & DEPLOYMENT

We implement Spatula with 1.5K line of Python code
over AWS DeepLens cameras [16]. Each DeepLens camera
runs Ubuntu OS-16.04 LTS, and is equipped with an Intel
Gen9 GPU and Intel Atom Processor CPU, 8GB RAM,
and 16GB built-in storage. Our testbed includes five such
cameras connected to each other via Wi-Fi and deployed
on AnonCampus (Figure 7). In our testbed, video analytics
modules (object detection, re-id) run on DeepLens’s on-chip
GPU and CPU.

We use a laptop (connected to the same Wi-Fi network
as the cameras) to run the Spatula controller. The Spatula
controller is responsible for profiling (§VI) and maintaining
the spatio-temporal model of correlations among cameras.
The connectivity between the controller and the cameras is
only to exchange “control messages” and not video data. We
implement two main control inferences (Figure 7):

1. A trigger message from the controller to a camera

triggers the camera to start (or stop) searching for a

specified query identity in its video within a specified time

interval. The trigger message can also be used to initiate
search in history videos for replay search (§V-C).

2. A feedback message from a camera to the controller

notifies the controller on an interesting incident (e.g., the

specified identity has just been detected, or left the cam-
era’s view) in real-time. A feedback follows an activation
message.

IX. EVALUATION

Our evaluation of Spatula shows the following highlights.
1) Spatula’s compute savings on the 8-camera

DukeMTMC dataset is 8.3x (~ 90% of the potential;

6III), and its network saving is 5.5x. Spatula improves

Dataset Comp. sav. Netw. sav. Prec. Recall

AnonCampus ~ 3.4x 3.0x 21.3% 1+ 2.2% 4

DukeMTMC 8.3x 5.5x 39.3% 1T 1.6% |

Porto 22.7x n/a 36.2% 1T 6.5% 1

Beijing 85.5x n/a 45.5% 1t 7.3% |
Table I

SPATULA EVALUATION HIGHLIGHTS.

precision from 51% to 90%. On the larger simulated dataset
of 130 and 600 cameras from Porto and Beijing, our
savings are 23 x —86x. (§IX-B, §IX-D)

2) Deployment on the 5-camera testbed with AWS
DeepLens cameras leads to 3.4x savings in compute and
3.0x savings in network. (§1X-B)

3) Spatula’s optimizes to keep the profiling costs small
without impacting the precision and recall. (§IX-E)

A. Methodology

A. Datasets — We evaluate Spatula on four datasets.

1) AnonCampus dataset (§VIII) is captured by 5 DeepLens
cameras deployed in a school building (see Figure 7).

2) DukeMTMC dataset is a video surveillance dataset from
eight cameras in the Duke University (Figure 2). The data
labels 2,700 unique identities and 4 million person detec-
tions.

3) Porto dataset is a simulated dataset generated from
1,710,671 GPS trajectories (time-stamped) obtained from
442 taxis running in the city of Porto, Portugal [12]. To
emulate cameras, we manually pin 130 cameras at inter-
sections of the city (we get the cameras’ coordinates from
Google Maps), and set each camera’s field-of-view to be a
square area centered at the camera with length [= 100m.
Since our objective is to measure Spatula’s gains in a large
city-wide setting of cameras, we assume the accuracy of
object detection and re-id equal to the values reported in
DukeMTMC-relID [10].

4) Beijing dataset is also a simulated large dataset from
17,621 GPS trajectories [71]. Similar to the Porto dataset,
we manually pin 600 cameras at intersections of the city and
set [= 100m. We also use the Beijing dataset to evaluate
Spatula under mixed mobility modes (i.e., walking, cycling,
driving).

B. Models — For our re-id model, we use a ResNet-
50-based implementation of person re-id [9], trained in
PyTorch. We then implement our tracking (Algorithms 1),
which applies this model iteratively at inference time. For the
AnonCampus dataset, we leverage person-reidentification-
retail-0076 from the OpenVINO model zoo [34].

For our profiler (§VI) to build the spatio-temporal model,
we apply the MTMC tracker [11] to label a subset of the
dataset (i.e., profile set with 16352 frames).

C. Workload — We run a set of 100 tracking
queries, {g;}, drawn from the test query partition of the
DukeMTMC-relD dataset [10] (20 from the AnonCampus

Cost (frames) Recall (%) Precision (%) BW. (Gbps) Delay (sec.)
40k 90 90 8
0.8 7
30k 80 80 b 653
70 70
20k 0.4 4
60 60 3
10k 50 50 0.2 2
L[]} I“ :
0 40 40 0 0
Baseline (all) S2 m S5-T2 (%) mmm S10-T10
Baseline (GP) S5 mmm S5-T10

Figure 8. Results for all-camera baseline (orange), geo-
proximity baseline (tan) vs. five versions of Spatula (blues) on
the DukeMTMC dataset. We argue S5-T2 (*) offers the best
trade-off on all metrics.

dataset, and 100 from the Porto dataset). Each tracking query
consists of multiple iterations. Each iteration searches for
the next instance, ¢! of the query identity, starting with the
initial instance ¢!, and stopping when no more instances are
found.

D. Metrics — We report the following four metrics which
are computed over the entire query set. (i) Compute cost
— Number of video frames processed, aggregated over all
queries {g; }. (ii) Nerwork cost — Average network bandwidth
usage of transmitting encoded videos required by search
algorithms. (iii) Recall (%) — Ratio of query instances
retrieved to all query instances in dataset, g;. (iv) Precision
(%) — Ratio of query instances retrieved to all retrieved
instances, 7. (v) Delay (sec.) — Lag between position of
tracker and current video frame, in seconds, at the end of a
tracking query.

E. Baselines — We compare Spatula against two
schemes:

1) Baseline (all) - Searches for query identity ¢ in all the
cameras at every frame step. (No spatio-temporal filtering.)
2) Baseline (GP) - Searches for query identity ¢ only in
the cameras that are in geographical proximity to the query
camera at every frame step. For DukeMTMC dataset, we
manually set pairs of neighboring cameras using Figure 2
while for Porto and Beijing datasets, we set geographical
proximity threshold to 10! (where [= 100m).

3) Spatula - Searches for query identity ¢ only on cam-
eras that are currently spatio-temporally correlated with c,
(as per Algorithm 1). The baselines and Spatula use the
same person re-id model [9]. We consider various versions
of Equation 1, corresponding to different spatio-temporal
filters. Each version is coded as Ss-Tt, where s indicates
the spatial filtering threshold and ¢ indicates the temporal
filtering threshold. Higher values of s and ¢ indicate more
aggressive filtering (no ¢ value indicates no temporal filtering
and helps measure the gains of spatial filtering alone).
Frames are encoded and sent to the network after spatial
and temporal filtering.

B. Spatio-temporal filtering gains

Figure 9, Figure 8, and Figure 10 compare the performance

Cost (frames) Recall (%) Precision (%) Bandwidth (Gbps)
100k 80 30 0.8
72 72
80k 0.6
60k 64 64
56 56 0.4

40k

48 48
0.2
- III v v III
0 32 32 0

Baseline S10 S30 mmm S10-T1 = S30-T1 (*) mmm S30-T5
Figure 9. Results for all-camera baseline (tan) vs. five versions
of Spatula (blues) on the AnonCampus dataset. We argue S30-

T1 (*) offers the best trade-off on all metrics.

Cost (frames) Precision (%) Delay (sec.)

125k
90 90 10
100k
80 80 8
75k
70 70 6
50k 60 60 4
25k 50 I 50 2
0 —— 40 40 0

. S5-T1 (%)

Recall (%)

Baseline (all) Baseline (GP) S5 = S5-T5

Figure 10. Results for all-camera baseline (orange), geo-
proximity baseline (tan) vs. three versions of Spatula (blues) on
the Beijing dataset. We argue S5-T1 (*) offers the best trade-off
on all metrics.

of the baseline and various Spatula versions on different
datasets>. We find that Spatula significantly outperforms
both baselines, by (1) reducing compute and network cost
and (2) improving precision, while maintaining comparable
recall. It is noteworthy that the best thresholds for Spatula
is dependent on the dataset. Spatula versions S30-T1, S5-
T2, S1-T1, S5-T1 offer the best trade-off between compute
cost, recall, precision, and delay in the four datasets, and in
general have to be tuned. We term these schemes Spatula-
O(ptimal).

1) Compute and network cost — Each successive version
of Spatula achieves lower compute cost than its predecessor,
and all of them outperform the baselines. For instance, in
Figure 8, the most aggressive version of Spatula, S10-T10
achieves 13x lower compute cost on 8 cameras than the
all-camera baseline. Similarly, a maximal value of 3.6x
compute savings can be achieved in Figure 9. Baseline (GP)
saves over Baseline (all) but its performance fluctuates on
different settings due to the discrepancy between spatial
correlation and geographical proximity (as also pointed out
in §III-AT1).

In comparison, Spatula-O’s costs are {3.4x, 8.3x,
22.7x, 85.5x} lower than the all-camera baseline in the
five-camera (AnonCampus), eight-camera (DukeMTMC),
130-camera (Porto), and 600-camera (Beijing) dataset, re-
spectively.

Similar trend in network saving can be seen in Figure
8 and Figure 9. On the DukeMTMC dataset, for instance,

’Due to space constraints, we don’t include the figure on the Porto
dataset. Instead, we report the numbers in the text.

Cost (frames) Recall (%) Precision (%) Delay (sec.)

o]

40k 20 90

30k
70 70
20k 60 60
10k 50 50 i 2 I
cHE 40 40 0

B Baseline
B Spatula

s o

Baseline 1/4 skip
Spatula 1/4 skip

Baseline 1/3 skip
Spatula 1/3 skip

Figure 11. Results for all-camera baseline vs. Spatula S5-T2 on
the DukeMTMC dataset with frame skipping.

Spatula-O achieves a 5.5x lower bandwidth usage due
to the reduced number of videos for processing. Since
encoding discontinuous video segments incurs more key
frames, bandwidth saving is smaller than compute saving
(8.3%).

2) Recall (%) — Compared with both baselines, recall of
the Spatula versions declines slightly when spatial/temporal
filtering is introduced. In Figure 8, for example, baseline (all)
achieves recall of 81.3%. Both spatial-only schemes achieve
79.3% recall. Spatula-O achieves 79.7%, a 1.6% drop from
the baseline. Similar patterns are observed on other datasets.
3) Precision (%) — Baseline (all) achieves precision of
{50.4%, 51.1%, 49.6%, 52.5%} on four datasets, respec-
tively. All versions of Spatula improve on this, but Spatula-
O in particular achieves {71.7%, 90.4%, 85.8%, 98.0%}
precision, which is a gain of {21.3%, 39.3%, 36.2%, 45.5%}
over the baseline. Compared with baseline (GP), precision
improvement of Spatula-O remains as high as {33.5%,
15.6%, 19.0%} on the DukeMTMC, Porto, and Beijing
dataset. Higher precision is a key benefit of spatio-temporal
filtering for cross-camera video analytics. By searching
fewer irrelevant cameras, Spatula is less likely to declare
matches that do not actually match the query.

4) Delay (sec.) — Here we report total cumulative lag (lag
in the absence of replay search (§V-C)), averaged over all
queries. We do not report the delay from the AnonCampus
deployment since among all 20 queries, only one needed
replay search. For DukeMTMC, Porto, and Beijing results,
we find that delay increases with more spatial or temporal
pruning. This is expected as there are more instances of
misses. Spatula-0, in particular, incurs less delay than S5-
T10, S5-T1 and S5-T5 but more delay than spatial-only
filtering.

Given this analysis, Spatula-O offers a favorable tradeoff
between the four metrics — achieving the lowest compute
cost, the highest precision, competitive recall, and moderate
lag (/3.6s), when compared to the baselines.

Network constraints: While the above results on network
savings were on the volume of data transferred (which is
useful when cameras use the metered LTE network), we also
evaluate Spatula under scenarios of bandwidth constraints,
e.g., cameras connecting to the same Wi-Fi access point.
Figure 12 shows F1 score of Spatula/Baseline (all) with

120 mmm Baseline (all) Spatula
[
g 100 82.86 83.38 84.4
5 80 67.15 67.28
o] n

o 1R

32 80 160
Bandwidth budget (Mbps)
Figure 12. Results for Spatula S5-T2 on the DukeMTMC data
with network bandwidth constraints.

Porto dataset (S1-T1) Beijing dataset (S5-T1)
—A— Spatula -¥- Baseline (all)

;40 75 —~©- Cost savings 100
w S
230 55 75 ¢
= . S
2l e ee| T @
9 20 35 508
o et
2 a
©10 —6— Cost savings 1517 a Spatula -¥- Baseline (ally 25

30 50 70 90 110 130 60 180 300 420 540

Number of Cameras Number of Cameras

Figure 13. Cost savings vs. number of cameras.
different bandwidth budgets. Baseline (all) achieves F1 score
of 61.0%, 67.2%, and 67.3%, on three bandwidth limita-
tions, respectively. Spatula, on the other hand, improves on
accuracy and achieves 82.9%, 83.4%, and 84.4% F1 score,
21.9%, 16.2%, 17.1% higher than the baseline. Since frames
after spatio-temporal filtering can be transmitted at a higher
resolution, this leads to a higher analytics accuracy. While
Spatula is able to send spatio-temporally correlated frames
consistently at 1080p under 160 Mbps bandwidth constraints
(typical of Wi-Fi networks), Baseline (all) has to scale down
the video resolution to 480p due to the bandwidth constraint.
Frame skipping: Prior work uses frame sampling to make
single-camera analytics cheaper [66], [39], [30]. It is or-
thogonal to Spatula’s spatio-temporal pruning. Figure 11
measures the impact of frame skipping—uniformly skip one
in 3 frames, and one in 4 frames—on both baseline (all)
and Spatula. Spatula maintains a much lower compute cost
with cost savings of 8.6x and 8.4x, which is in the same
ballpark as without frame skipping of 8.3, thus showing
the orthogonality of frame skipping to Spatula.

C. Large-scale camera data

The key objective of using the trajectories from the Porto
and Beijing datasets (§IX-A) was to measure Spatula’s gains
at scale; unfortunately there are no video datasets available
for hundreds of cameras. Figure 13 shows cost savings and
precision of Spatula with increasing number of cameras
from these two datasets. Cost savings steadily grows with
increasing number of cameras, achieving up to 68x lower
cost than baseline (all) in Spatula S5-T1 for 540 cameras. We
believe this is an encouraging result for Spatula’s value for
large camera deployments. All through, Spatula maintains a
25% — 40% gain on precision with little impact on recall.

D. Replay search

We evaluate the lag reduction with replay search from §V-C:

Cost (frames) Delay (sec.)

40k
82 82 2.0
30k
74 74 s
66 66
20k Lo
58 58
10k
50 50 0.5
0 Ll 42 42 0.0

Spat-O W Spat-O (2x skip) EEESpat-O (2x fast)

Recall (%) Precision (%)

Baseline (all)

Figure 14. Replay search. Schemes compared: baseline, Spatula-
O (normal replay search), Spatula-O (2 x skip), Spatula-O (2x
fast-forward). Scheme 2 x skip outperforms 2 x fast-forward on
both compute cost and delay.

Skip frame mode - Employ a 3 frame sampling rate to
increase throughput on historical frames, at the price of
lower accuracy (via missed detections). (2x skip)
Parallelism mode - Employ a 2z frame processing rate to
increase throughput, at the price of increased compute cost
(via increased resource usage). (2x ff)

Both schemes are applied to Spatula-O, and compared
to (a) the all-camera baseline and (b) Spatula-O with the
default real-time replay search, which incurs 2.6s of delay.

As Figure 14 shows, both 2x skip and 2x ff achieve delay
reductions, decreasing final cumulative lag to 1.8s and 1.3s,
respectively. The reason why 2x skip doesn’t halve the delay
is due to the skipped query instances during the first round of
replay search where syesn and tiresnh decreased by a factor of
10. Also, delay reductions from 2x skip and 2x ff come with
different tradeoffs. 2x skip reduces recall by 1.2% to 78.0%,
but increases precision from 90.37% to 90.87% and increase
compute cost savings from 8.30x to 8.68x better than the
baseline (by processing fewer historical frames). 2x ff does
not impact recall and precision, but reduces compute cost
savings from 8.30x to only 8.27x better than the baseline.

E. Profiling cost vs. tracking accuracy

Profiling cost increases with the number of frames that must
be processed by the MTMC tracker (§VI). We investigate
the trade-off between profiling cost and subsequent tracking
accuracy. Specifically, we test if we can build a precise
spatio-temporal model on smaller subsets of the training
data obtained by uniformly sampling the frames. We apply
a sampling rate of 8x, 6x, 4%, 2x, and 1x (using X in
8 frames) in the profile partition of the Duke dataset
(8IX-A) for profiling, which translates to correspondingly
lower profiling costs.

As Figure 15 shows, recall of Spatula during live tracking
reaches the maximum of 80.1% with 6x sampling, i.e., when
half of the frames are labeled for offline profiling to obtain
the spatio-temporal model. Interestingly, on either side of
this, the recall falls. On the left side, the drop is caused
by insufficient amount of profiling data. On the right side,
the small drop is because extra data results in a spatial-
temporal model being overfit to the profile partition.

78 100
= X
X 70 95 —
— c
?362 e S e A 90 :g
254 85 @

46 —e— Recall —A=- Precision g0 &

2 (1x) 4 (2x) 8 (4x) 12 (6x)
Profiling cost (1000s of frames)

16 (8x)

Figure 15. Offline profiling cost vs. online recall. Profile intervals
compared (in minutes of data used per camera): 49.4 min.
(full), 37.1 min., 24.7 min. (half), 12.4 min., 6.2 min.

This experiment indicates that spatial-temporal model can
be built on a reasonably small set of training data (i.e., 37.1
min). However, the exact amount of data to train the spatial-
temporal model varies among datasets, and thus should be
chosen carefully. Precision remains stable (~90%) in Figure
15 when more than 4K (i.e., 2x sampling) frames are used
for training.

If we combine the profiling cost with the cost of the
live video analytics, we see that Spatula would need to run
only 34 live tracking queries to break-even with locality-
agnostic tracking (calculations omitted). This represents a
small fraction of the expected annual workload in large video
analytics operations [67], [66] that track many hundreds of
thousands of queries. Hence Spatula’s profiling costs are
small and will not dent the gains, leaving it to remain sizable.

F. Identity detection

Lastly, we evaluate Spatula’s pruning on identity detection,
the single-camera application described in §V-D. Spatula
achieves as high as 7.6x cost reduction with § = 0.95
on the 8-camera DukeMTMC dataset (6 is the likelihood
threshold for searching a camera’s stream). Similar to cross-
camera tracking, the gain on precision far outweighs the
drop on recall. In fact, for § = 0.75, recall does not
drop at all while precision improves by 28% even as cost
savings stay at 6.6x. This experiment shows the generality
of applying Spatula for both cross-camera as well as single-
camera applications.

X. RELATED WORK

Video Analytics Systems. A sizable body of work on
video analytics has emerged recently [49], [66], [42], [30].
Chameleon exploits correlations in camera content (e.g.,
velocity of objects) to amortize profiling costs, but not the
live video analytics themselves [39]. These works leave three
problems unexplored, each of which Spatula addresses. First,
they focus on single-frame tasks (e.g., object detection and
classification), which are stateless. In contrast, surveillance
applications, like the real-time tracking we focus on, involve
multi-frame tracking, where future questions depend on past
inference results. Second, they study single camera analyt-
ics. Thus, they do not explore the complexities involved in
cross-camera inference on live video (e.g., occlusions) that
define applications such as person re-id. Third, in contrast

to classification tasks, many security applications search for
new object instances (e.g., a suspicious person) where the
training data is skewed toward negative examples. Our use
of correlations across cameras, however, yields substantial
accuracy gains.

Efficient Machine Learning. Improving ML models using
model compression [28], [44], compact architectures [33],
[46], knowledge distillation [29], [26], [17], and model
specialization [42], [30], are orthogonal to Spatula, which
would gain from any efficiency improvement of the models
(e.g., for re-id).

Orthogonal to systems that tradeoff resources and accu-
racy of models [27], [24], [22], [67], [20], [32], [52], [45],
[38], Spatula entails a new approach: instead of running
cheaper models, it processes on less data using spatio-
temporal correlations.

Computer Vision. Techniques for person re-id and multi-
target, multi-camera (MTMC) tracking make the following
contributions: (1) new datasets [56], [70], [61], [60], (2)
new neural network architectures [70], [61], [60], [55],
(3) new training schemes [72], [58], [70], [61], or new
understandings of multi-camera correlations [23], [59], [21],
[48]. While the re-id and tracking modules in Spatula could
take advantages of these advancements, the computer vision
works do not address the inference cost of re-id and MTMC
tracking [37], [18], [43], [51], [19], nor does it study online
tracking (iterated re-id), a key application of interest in
camera systems.

Mobility Modeling. Studies have shown promising re-
sults of generating human/vehicle mobility models from
call detail records [35], [65], wireless signals [63], social
media [40], GPS [71], and transactions in transportation
systems [62], [65]. While none of the works apply mobility
models to video analytics, Spatula could benefit from their
techniques on building spatial-temporal models.

XI. CONCLUSIONS

Cross-camera analytics is a computationally expensive func-
tionality that underpins a range of real-world video analytics
applications, from suspect tracking to intelligent retail stores.
We presented Spatula, a system that leverages a learned
model of cross-camera correlations to drastically reduce the
size of the inference time search space, thus reducing the
cost of cross-camera analytics. Spatula directs its search
towards the camera streams that likely contain the identity
being tracked, while gracefully recovering from (rare) misses
using a replay search on historical videos. Our results are
promising: Spatula reduces compute workload by 8.3x on
the 8-camera DukeMTMC dataset, and improve inference
precision by 39%. On a simulated dataset of 130 cameras, its
gains grow with the number of cameras. We have deployed
a five-camera testbed on campus and are expanding our
testbed.

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(91

(10]

(11]

(12]

[13]

(14]

[15]

[16]

(17]

REFERENCES

Absolutely everywhere in beijing is now covered by police
video surveillance. https:/qz.com/518874/. Accessed: 2018-
10-27.

Amber alert. https://en.wikipedia.org/wiki/AMBER_Alert.
Accessed: 2018-10-27.

Are we ready for ai-powered secu-
rity cameras? https://thenewstack.io/
are-we-ready-for-ai-powered-security-cameras/.

Azure stack edge. https://azure.microsoft.com/en-us/services/
databox/edge/.

British transport police: Cctv. http://www.btp.police.uk/
advice_and_information/safety_on_and_near_the_railway/
cctv.aspx. Accessed: 2018-10-27.

Can 30,000 cameras help solve chicago’s crime
problem? https://www.nytimes.com/2018/05/26/us/
chicago-police-surveillance.html. Accessed: 2018-10-27.

Cloud-based video analytics as a service of 2018. https://
www.asmag.com/showpost/27143.aspx.

Data generated by new surveillance cameras to increase expo-
nentially in the coming years. http://www.securityinfowatch.
com/news/12160483/.

Deep person reid. https://github.com/KaiyangZhou/
deep-person-reid/. Accessed: 2018-10-28.

Dukemtme-reid. https://github.com/layumi/
DukeMTMC-relD_evaluation. Accessed: 2018-10-28.

Multi-target, multi-camera tracking.
ergysr/DeepCC. Accessed: 2018-10-28.

https://github.com/

Taxi Service Trajectory - Prediction Challenge, ECML
PKDD 2015 Data Set. https://archive.ics.uci.edu/ml/datasets/
Taxi+Service+Trajectory+-+Prediction+Challenge, + ECML+
PKDD+2015.

Video meets the internet of things.
/Iwww.mckinsey.com/industries/high-tech/our-insights/
video-meets-the-internet-of-things. Accessed: 2018-10-28.

https:

Wi-fi VS. Which is better for
iot? https://www.verypossible.com/blog/
wi-fi-vs-cellular-which-is-better-for-iot.

cellular:

You’re being watched: there’s one cctv camera for every 32
people in uk. https://www.theguardian.com/uk/2011/mar/02/
cctv-cameras-watching-surveillancel. Accessed: 2018-10-27.

Amazon. AWS DeepLens. https://aws.amazon.com/deeplens/,
2017.

Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Or-
mandi, George E Dahl, and Geoffrey E Hinton. Large scale
distributed neural network training through online distillation.
In ICLR, 2018.

(18]

[19]

[20]

(21]

[22]

(23]

[24]

(25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

Yinghao Cai and Gérard Medioni. Exploring Context Infor-
mation for Inter-Camera Multiple Target Tracking. In /EEE
WACYV, 2014.

Simone Calderara, Rita Cucchiara, and Andrea Prati.
Bayesian-Competitive ~Consistent Labeling for People
Surveillance. TPAMI, 30, 2007.

Tiffany Yu-han Chen. Glimpse: Continuous, Real-Time Ob-
ject Recognition on Mobile Devices Categories and Subject
Descriptors. In ACM SenSys, 2015.

Chen Change Loy, T. Xiang, and S. Gong. Multi-camera
activity correlation analysis. In JEEE CVPR, 2009.

Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J.
Franklin, Joseph E. Gonzalez, and Ion Stoica. Clipper: A
Low-Latency Online Prediction Serving System. In USENIX
NSDI, 2017.

T J Ellis, D Makris, and J K Black. Learning a multi-camera
topology. In Joint IEEE International Workshop on Visual
Surveillance and Performance Evaluation of Tracking and
Surveillance, pages 165-171, 2003.

Biyi Fang, Xiao Zeng, and Mi Zhang. NestDNN: Resource-
Aware Multi-Tenant On-Device Deep Learning for Continu-
ous Mobile Vision. In ACM MobiCom, 2018.

Ganesh Ananthanarayanan, Victor Bahl, Peter Bodik, Ki-
ishna Chintalapudi, Matthai Philipose, Lenin Ravindranath
Sivalingam, Sudipta Sinha. Real-time Video Analytics - the
killer app for edge computing. In IEEE Computer, 2017.

Urban Gregor, Krzysztof J. Geras, Ebrahimi Kahou Samira,
Ozlem Aslan, Wang Shengjie, Abdelrahman Mohamed,
Matthai Philipose, Matt Richardson, and Caruana Rich. Do
Deep Convolutional Nets Really Need To Be Deep And
Convolutional? In ICLR, 2017.

S Han, H Shen, M Philipose, S Agarwal, A Wolman, and
A Krishnamurthy. MCDNN: An approximation-based exe-
cution framework for deep stream processing under resource
constraints. In ACM MobiSys, 2016.

Song Han, Huizi Mao, and William J. Dally. Deep Com-
pression: Compressing Deep Neural Networks with Pruning,
Trained Quantization and Huffman Coding. In /CLR, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
Knowledge in a Neural Network. In NIPS, 2014.

Kevin Hseih, Ganesh Ananthanarayanan, Peter Bodik,
Paramvir Bahl, Matthai Philipose, Phillip B. Gibbons, and
Onur Mutlu. Focus: Querying Large Video Datasets with
Low Latency and Low Cost. In USENIX OSDI, 2018.

Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodik,
Leana Golubchik, Minlan Yu, Victor Bahl, and Matthai
Philipose. VideoEdge: Processing Camera Streams using
Hierarchical Clusters. In ACM SEC, 2018.

Loc N Huynh, Youngki Lee, and Rajesh K Balan. DeepMon:
Mobile GPU-based Deep Learning Framework for Continu-
ous Vision Applications. In ACM MobiSys, 2017.

(33]

(34]

(35]

(36]

(371

(38]

(39]

[40]

(41]

(42]

[43]

[44]

[45]

[46]

[47]

Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf,
Song Han, William J. Dally, and Kurt Keutzer. Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and <1mb
model size. arXiv:1602.07360, 2016.

Intel. OpenVINO. https://github.com/opencv/open_model_
700, 2019.
Sibren Isaacman, Richard Becker, Ramén Céceres, Margaret

Martonosi, James Rowland, Alexander Varshavsky, and Wal-
ter Willinger. Human Mobility Modeling at Metropolitan
Scales. In ACM MobiSys, 2012.

Samvit Jain, Ganesh Ananthanarayanan, Junchen Jiang, Yuan-
chao Shu, and Joseph E. Gonzalez. Scaling Video Analytics
Systems to Large Camera Deployments. In ACM HotMobile,
2019.

Omar Javed, Khurram Shafique, Zeeshan Rasheed, and
Mubarak Shah. Modeling inter-camera space-time and ap-
pearance relationships for tracking across non-overlapping
views. CVIU, 109, 2008.

Angela H Jiang, Daniel LK Wong, Christopher Canel, Lilia
Tang, Ishan Misra, Michael Kaminsky, Michael A Kozuch,
Padmanabhan Pillai, Daniel L-K Wong, David G Andersen,
and Gregory R Ganger. Mainstream: Dynamic Stem-Sharing
for Multi-Tenant Video Processing. In USENIX ATC, 2018.

Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Sid-
dhartha Sen, and Ion Stoica. Chameleon: Video Analytics at
Scale via Adaptive Configurations and Cross-Camera Corre-
lations. In ACM SIGCOMM, 2018.

Raja Jurdak, Kun Zhao, Jiajun Liu, Maurice AbouJaoude,
Mark Cameron, and David Newth. Understanding Human
Mobility from Twitter. PLOS ONE, 10(7):1-16, 07 2015.

K. Jingling, C. Bodensteiner, and M. Arens. Person re-
identification in multi-camera networks. In IEEE CVPR,
2011.

Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and
Matei Zaharia. NoScope: Optimizing Neural Network Queries
over Video at Scale. In VLDB, 2017.

Cheng-Hao Kuo, Chang Huang, and Ram Nevatia. Inter-
camera Association of Multi-target Tracks by On-Line
Learned Appearance Affinity Models. In ECCV, 2010.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning Filters for Efficient ConvNets. In
ICLR, 2017.

Robert LiKamWa and Lin Zhong. Starfish: Efficient Concur-
rency Support for Computer Vision Applications. In ACM
MobiSys, 2015.

Min Lin, Qiang Chen, and Shuicheng Yan.
network. In ICLR, 2014.

Network in

Franz Loewenherz, Victor Bahl, and Yinhai Wang. Video
analytics towards vision zero. In ITE Journal, 2017.

(48]

(49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

Chen Change Loy, Tao Xiang, and Shaogang Gong. Time-
Delayed Correlation Analysis for Multi-Camera Activity
Understanding. International Journal of Computer Vision,
90:106-129, 2010.

Yao Lu, Aakanksha Chowdhery, and Srikanth Kandula. Op-
tasia: A Relational Platform for Efficient Large-Scale Video
Analytics. In ACM SoCC, 2016.

Mahadev Satyanarayanan, Victor Bahl, Ramon Caceres, Nigel
Davies. The Case for VM-based Cloudlets in Mobile Com-
puting. In IEEE Pervasive Computing, 2009.

Dimitrios Makris, Tim Ellis, and James Black. Bridging the
gaps between cameras. In CVPR, 2004.

Akhil Mathur, Nicholas D. Lane, Sourav Bhattacharya, Aidan
Boran, Claudio Forlivesi, and Fahim Kawsar. DeepEye:
Resource Efficient Local Execution of Multiple Deep Vision
Models Using Wearable Commodity Hardware. In ACM
MobiSys, 2017.

N. Narayan, N. Sankaran, D. Arpit, K. Dantu, S. Setlur,
and V. Govindaraju. Person Re-identification for Improved
Multi-person Multi-camera Tracking by Continuous Entity
Association. In /[EEE CVPR, 2017.

Qualcomm. Vision Intelligence Platform.
https://www.qualcomm.com/news/releases/2018/04/11/

qualcomm-unveils-vision-intelligence- platform-purpose-built-iot-devices,

2018.

Kumar S. Ray, Vijayan K. Asari, and Soma Chakraborty.
Object Detection by Spatio-Temporal Analysis and Tracking
of the Detected Objects in a Video with Variable Background.
In arXiv:1705.02949, 2017.

Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara,
and Carlo Tomasi. Performance Measures and a Data Set for
Multi-Target, Multi-Camera Tracking. In ECCV Workshops,
2016.

Ergys Ristani and Carlo Tomasi. Features for Multi-Target
Multi-Camera Tracking and Re-Identification. In [EEE
CVPR, 2018.

Ergys Ristani and Carlo Tomasi. Features for Multi-Target
Multi-Camera Tracking and Re-Identification. In [EEE
CVPR, 2018.

Kinh Tieu, Gerald Dalley, and W. Eric L. Grimson. Inference
of Non-Overlapping Camera Network Topology by Measur-
ing Statistical Dependence. In IEEE ICCV, 2005.

Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian. Per-
son Trasfer GAN to Bridge Domain Gap for Person Re-
Identification. In IEEE CVPR, 2018.

Tong Xiao, Shuang Li, Bochao Wang, Liang Lin, and Xi-
aogang Wang. Joint Detection and Identification Feature
Learning for Person Search. In IEEE CVPR, 2017.

Zidong Yang, Ji Hu, Yuanchao Shu, Peng Cheng, Jiming
Chen, and Thomas Moscibroda. Mobility Modeling and
Prediction in Bike-Sharing Systems. In ACM MobiSys, 2016.

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

Jungkeun Yoon, Brian D. Noble, Mingyan Liu, and Minkyong
Kim. Building Realistic Mobility Models from Coarse-
grained Traces. In ACM MobiSys, 2006.

Ben Zhang, Xin Jin, Sylvia Ratnasamy, John Wawrzynek,
and Edward A Lee. Awstream: Adaptive wide-area streaming
analytics. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, pages 236—
252. ACM, 2018.

Desheng Zhang, Jun Huang, Ye Li, Fan Zhang, Chengzhong
Xu, and Tian He. Exploring human mobility with multi-
source data at extremely large metropolitan scales. In ACM
MobiCom, 2014.

Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik,
Matthai Philipose, Paramvir Bahl, and Michael J. Freedman.
Live Video Analytics at Scale with Approximation and Delay-
Tolerance. In USENIX NSDI, 2017.

Tan Zhang, Aakanksha Chowdhery, Paramvir Bahl, Kyle
Jamieson, and Suman Banerjee. The Design and Implemen-
tation of a Wireless Video Surveillance System. In ACM
MobiCom, 2015.

Zhimeng Zhang, Jianan Wu, Xuan Zhang, and Chi
Zhang. Multi-Target, Multi-Camera Tracking by Hierar-
chical Clustering: Recent Progress on DukeMTMC Project.
arXiv:1712.09531, 2017.

Liang Zheng, Yi Yang, and Alexander G Hauptmann.
Person Re-identification: Past, Present and Future.
arXiv:1610.02984, 2015.

Liang Zheng, Hengheng Zhang, Shaoyan Sun, Manmohan
Chandraker, Yi Yang, and Qi Tian. Person Re-identification
in the Wild. In IEEE CVPR, 2017.

Yu Zheng, Xing Xie, and Wei-Ying Ma. Understanding
Mobility Based on GPS Data. In ACM Ubicomp), 2008.

Zheng Zhu, Wei Wu, Wei Zou, and Junjie Yan. End-to-End
Flow Correlation Tracking With Spatial-Temporal Attention.
In IEEE CVPR, 2018.

