Spider: A Multi-Hop Millimeter-Wave Network for Live Video Analytics

Zhuaqi Li'2, Yuanchao Shu!, Ganesh Ananthanarayanan!, Longfei Shangguan!, Kyle Jamieson?, Paramvir Bahl!

! Princeton University, 2 Microsoft

Abstract

Massive video analytics systems, comprised of many densely-
deployed cameras and supporting edge servers, are driving
innovation in many areas including smart retail stores and
security monitoring. To support such systems the challenge
lies in collecting video footage in a way that maximizes end-
to-end application goals, and scales this performance as cam-
era density increases to meet application needs. This paper
presents Spider, a multi-hop, millimeter-wave (mmWave)
wireless relay network design that meets these needs. To mit-
igate physical mmWave link blockage, Spider integrates a
low-latency Wi-Fi control plane with a mmWave relay data
plane, allowing agile re-routing around blockages. Spider pro-
poses a novel video bit-rate allocation algorithm coupled with
a scalable routing algorithm that works hand-in-hand toward
the application-level objective of maximizing video analyt-
ics accuracy, rather than simply maximizing data throughput.
Our experimental evaluation uses a combination of testbed
deployment and trace-driven simulation and compares against
both Wi-Fi and mmWave mesh schemes that operate without
Spider’s algorithms. Results show that Spider is able to sup-
port camera densities up to 176% higher (gains of 2.76x) than
the best-performing comparison scheme, allowing it alone to
meet real-world camera density targets (4—250 cameras/1,000
sq. ft., depending on application). Further experiments demon-
strate Spider’s scalability in the presence of failures, with a
5.4-100x reduction in average failure recovery time.
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1 Introduction

Live video analytics is central to many emerging applications
like cashierless store management [3] and security monitor-
ing [41, 42], where hundreds of cameras work together to
monitor regions of interest [24] and cameras stream their
video feeds to on-premise edge servers [6, 7] equipped with
accelerators (i.e., GPUs) to execute machine learning models
like DNN-based object detection and tracking. The perfor-
mance of these machine learning models is highly sensitive
to variations in video content and quality [61]. Applications’
needs for high video analytics accuracy thus drive a tech-
nological push for higher resolution and video frame rates:
prior work shows up to a 2.2X improvement in accuracy for
object detection with 4K video resolution and frame rates of
60 frames per second [47].

Applications also often require a dense, large-scale camera
network to achieve seamless coverage. For example, cashier-
less stores use one camera per four square feet (estimated
from photos of an actual Amazon Go store [2]). The area
of a typical small cashierless store ranges from 1,200-2,700
square feet, thus requiring 300-675 cameras. This in turn
requires tens of Gbits/second bandwidth in the aggregate, a
requirement that outclasses both Wi-Fi and sub-6 GHz cel-
lular systems by an order of magnitude. While connecting
massive video camera deployments via wired backhaul is
possible, it incurs high labor and construction cost to route
cables from distributed cameras to edge servers. In addition,
the cost goes up when we scale the deployment to a larger
area (e.g., enterprise building) where much longer cables are
needed.

Millimeter-wave (mmWave) wireless networks, with multi-
Gbit/second capacities (e.g., 802.11ad WiGig [40] at 60 GHz),
are a promising high bit-rate alternative at a reasonable cost,
as the price of a mmWave radio is now roughly the same as
a Wi-Fi radio (15 USD) [5], and do not require backbone
cables and thus save most of the material and labor cost.
However, they do have well-documented limitations: (i) their
high throughputs depend on clear line-of-sight, thus making
them susceptible to moving objects and people in the building,
and (ii) their connection range is shorter than typical Sub-
6 GHz communication technologies.

Spider: A mmWave multi-hop network design for video
analytics. We propose Spider, a mmWave multi-hop relay
network to support densely-deployed live video analytics sys-
tems. As shown in Fig. 1, Spider fits WiGig radios to edge
servers, while cameras relay their video streams to the edge
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Fig. 1— Spider’s data and control flows. High volume video
streams traverse mmWave links (solid lines in the data plane).
Short control packets are forwarded over long-range wireless
links (solid lines in the control plane).

server for analytics processing. Cameras close to the edge
servers communicate directly, while farther-away cameras
pass their streams to other relay cameras that in turn forward
them to an edge server. As a result, network links of relay
cameras closer to the edge server will experience higher uti-
lization and congestion.

While there have been extensive studies on building sin-
gle-hop mmWave networks [19, 20, 36, 57, 64], no effort
has yet been focused on large-scale video streaming over
multi-hop mmWave networks. Constructing such a mmWave
relay network is difficult because if one link in such a net-
work becomes disconnected as a result of physical blockage
[9, 66], the narrow beamwidth of that link means that the
radio endpoints would then have to search for a possible alter-
nate reflection path or alternate route in order to reconnect the
network. This is problematic because the new relay node may
be busy itself with ongoing data transmission, and thus may
not know that it is needed to participate in the search. Such
a search, during which the network remains disconnected,
also inevitably involves throughput, latency, and jitter penal-
ties [20, 53, 66]. Furthermore, the necessary dissemination
of routing information to each node’s neighbors in the mm-
Wave relay network is challenging, since each radio has to
beam towards each of its neighbors, which is costly in time.
The conclusion is that we require a separate control plane to
enable rapid, centralized routing information collection and
dissemination, which we describe in §2.1.

Flow routing in multi-hop relay networks is a well-studied
problem [12, 16, 18, 33, 51]. However, Spider’s design objec-
tive is fundamentally different, as it focuses on the application-
level objective of video analytics accuracy: unlike prior work,
our routing protocol does not optimize for sum network flow

throughput [48], but instead alleviates the congestion of bot-
tleneck nodes by taking into account the potential interference
between directional beams and dynamics in link throughput.
As aresult, it often selects routes that might be sub-optimal in
terms of sum network flow, but lead to less congestion in the
network and thus allocates each camera sufficient network re-
sources to transmit its stream at good video-analytic accuracy.
We describe Spider’s routing protocol in §2.2.

For the purpose of building the Spider network, multiple
streams need to share a single mmWave link, and each such
link is highly dynamic [9], carrying varying amounts of video
stream content [26]. This motivates us to develop a multi-
camera video bit rate allocation algorithm (Spider-VBA, §2.3)
to adjust each camera’s offered encoded video bit-rate and
to allocate each camera’s video stream to each network link,
in a way that maximizes video analytics accuracy. Spider-
VBA formulates the complex, non-linear bandwidth-accuracy
tradeoff, which also varies across cameras and with time, as
an optimization problem, and solves it using a mixed inte-
ger linear programming (MILP) model. It then disseminates
video bit-rates through the control plane to all cameras and
relays in the network.

We have built a Spider prototype in a building with 11
distributed camera nodes. We conduct experiments and trace-
driven simulations in our the testbed. Results show that Spider
can support the camera network with up to 2.76x greater de-
ployment density compared to baseline Wi-Fi and mmWave
systems that do leverage neither Spider-VBA nor Spider’s
decoupled control and data plane architecture. Further exper-
iments demonstrate Spider’s scalability in the presence of
failures, with a 5.4-100x reduction in average failure recov-
ery time against the same set of baselines.

2 Design

Spider leverages high-throughput mmWave links to build a
high-accuracy and scalable wireless video analytic system,
with the objective of maximizing overall live video analytic
accuracy. To this end, Spider makes judicious decisions on
i) the amount of data produced by each camera, and ii) data
routing in the multi-hop mmWave relay network. Spider de-
couples the control plane from the data plane in the frequency
domain, which allows a rapid collection of routing-related
control packets over the lower-frequency band, and an un-
obtrusive bulky video data dissemination over the mmWave
relay networks. (§2.1). To optimize the routing selection for
bulky video data transfer, Spider’s routing algorithm exploits
the directionality of mmWave links to parallelize concurrent
flows with minimal path congestion (§2.2). In the applica-
tion layer, Spider incorporates a flexible, application-specific
video bit-rate allocation algorithm (Spider-VBA) to dynam-
ically configure video bit-rate for each camera so that the
overall video analytic accuracy is maximized (§2.3).
Spider contains two types of devices.
Camera node. Camera nodes produce live video streams and
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of routing information. Arrows represent failure recovery steps.

also forward other cameras’ video streams through mmWave
links to the edge server. In addition, each camera produces
high-resolution video samples periodically and sends them to
the edge server for resource-accuracy profiling. To facilitate
network management, camera nodes also periodically report
the data rate of all associated links to the edge server.

Edge server. Edge server feeds video streams directly to
its analytics engine for video content analysis. To deal with
content variations and link throughput dynamics, edge server
periodically profiles high bit-rate video samples from each
camera and updates its resource-accuracy profile. Based on
the latest resource-accuracy profile and link status reports,
edge server runs a reactive scheduler to route network flows
and reallocate bandwidth to each camera.

2.1 Network Architecture

Spider adopts a multi-hop relay architecture to expand the
network to a large group of cameras while benefiting from the
high throughput of mmWave links. However, relay architec-
ture poses significant challenges to data routing as mmWave
links are highly directional and susceptible to blockage.

In a mmWave relay network, a node ought to associate
and update network status (e.g., link and node failures) with
its neighbors separately due to the narrow and directional
beam of its antenna arrays. This is a time-consuming pro-
cess as setting up a mmWave link alone would take up to
1.5 s [20]. Therefore, propagating a network status update
to all the nodes in a relay network with hundreds of camera
nodes could take 30-60 seconds. In addition, broadcasting
routing information would inherently pause the on-going data
forwarding on the parent node as the former has a higher
priority. As a result, it could lead to high application layer
latency and link failure rate due to link status changes during
route request flooding.

Fig. 2(a) shows how new routes are established after a link
failure in mmWave relay network. When the link between
Cs and edge server breaks, the failure information has to
go through C4 (Step @) and C; (Step @), all through their
mmWave channels, to the edge server (as shown in Fig. 2(b)).
Specifically, in order to establish a connection between Cy4
and Cs, Cs has to pause its ongoing video forwarding and
undertakes beam searching to align with Cy4. Such link failure

recovery can be significantly slow in a large network as link
establishment involves time-consuming beam searching.

An intuitive solution is to pre-compute the alternative routes
and cache these backup routing plans locally at each camera
node. Such design, however, runs into problems due to the
following issues. First, the impact of a single link failure may
spread over the entire network. We take the same topology
shown in Fig. 2(a) as an example. When both C, and Cs have
to route their traffic through Cs due to the link failure between
Cs and the edge server, C; has to re-route its traffic as well to
avoid saturating the link between C; and edge server. As C,
is not aware of the link failure between Cs and the edge node,
Cs has to notify C, through multiple hops, which inevitably
introduces significant delay. Second, the combination of pos-
sible link failures grows exponentially with the network size.
Accordingly, computing the alternative routing plan for each
link failure case tends to be computationally intractable.

Decoupling the control and data planes. Spider introduces
a dedicated control plane at a lower frequency (e.g., Wi-Fi)
that can communicate over a much longer distance and is
more robust to the presence of objects and people in indoor
environments. Cameras send link status updates through Spi-
der’s control plane. The edge server collects these updates,
making centralized routing decisions, and then disseminates
routes back to the cameras via the control plane. In the exam-
ple of Fig. 2(a), once the link between camera Cs and the edge
node breaks, instead of propagating this issue through the data
plane, Cs reports the link failure to the edge server directly
through the control plane(Step ), as shown in Fig. 2(c). The
edge server then makes a centralized re-routing decision, and
notifies Cs as well as C, and Cy4 to update their routes, through
the control plane as well. Upon receiving the new configu-
ration, these three cameras take a one-shot beam searching
to switch to their new parent nodes concurrently, thereby
minimizing link failure recovery latency. With such a design,
the control plane at the lower frequency can help the mm-
Wave link recover from failure immediately, which allows
the multi-hop mmWave network deliver the video streams
robustly.

In what follows, we use 802.11ac Wi-Fi as the control
plane (upper blue plane) and 802.11ad WiGig mmWave as
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mmWave radios to achieve maximal flow parallelism.

the data plane (lower green plane) in Spider’s design (Fig. 1).!
Overall, Spider produces on average only ten Kbit/s control
traffic over the entire relay network. Such a small amount
of traffic has a negligible effect on legacy users in the same
Wi-Fi/LTE band, as we experimentally demonstrate in §4.4.1.

2.2 Routing algorithm

Spider’s routing algorithm has to cope with a collection traffic
pattern from camera nodes to the edge server. However, unco-
ordinated concurrent flows (video streams) tend to interfere
with each other and create bottlenecks in the mmWave relay
network [4]. As illustrated in Fig. 3(a), the transmission from
Camera Cg to C, causes interference at C;.

Figures 3 and 4 demonstrate the impact of wireless medium
sharing on flow parallelism. As Fig. 4(a) shows, Camera C;
in Fig. 3(a) needs to divide time slots into seven parts, two
of which to receive video streams from C; and Cs, three to
transmit data (i.e., flows originating from Camera nodes Cj,
C4, and Cs) to the edge server, and another two to wait for the
transmission from Cg to the edge server. The seven time slots
cannot overlap each other in order to avoid interference in the
shared medium.

Strawman: Max-flow routing. A natural idea for Spider
could be to formulate data forwarding as a maximum flow
problem [48], but this does not take interference and relay con-
siderations into account. As the example in Fig. 3(a) shows,
Max-flow routing prefers the route C¢ — C; — ES to the
route C¢ — C3 — ES, due to the higher link throughput in
the former path. However, route C¢ — C, — ES leads to
more flows crowded at C;. As Fig. 4(a) shows, there are seven
non-overlapped time slots at C;.

As opposed to Max-flow routing, Spider’s routing algo-
rithm focuses on increasing the parallelism of concurrent
flows by exploiting mmWave’s favorable spatial reuse prop-
erties. As a result, it leads to less congestion in the network
and thus allows each camera node to get more time slots to
transit its video data. As shown in Fig. 3(b), C¢ chooses the
route C¢ — C; — ES and thus routes the traffic away from

ILikewise, LTE could be the control plane for larger coverage.

for max-flow and Spider routing
(cf. Fig. 3), respectively.

the bottleneck. The resultant number of non-overlapped time
slots at C; hence reduces to five (Fig. 4(b)).

In addition to flow parallelism, link throughput also affects
network congestion. A higher link throughput means more
data can be transmitted given the same time slot and there-
fore leads to less congestion. To model the effect of both
flow parallelism and link throughput, we formally define the
congestion of a node C; as:

We, = CETYC" Ne, + gTCT ch + CETZ Nc,
(Ci,p(Ci)) C,-E{C(i)}( '7.Ci) Cke{]I(i)}( k>P(Ck))
transmitting receiving deference
(H

where p(C;) is the parent node of C;, C(i) is the set of children

of node C;, I(i) is the set of camera nodes that C; can overhear

their transmission, N¢, is the number of flows transmitted

by camera node C;, and ETCT is the Estimated Transmission
iCj

Time (ETT) [1, 16] of the link between C; and node C;, which

is defined as the inverse of link throughput.

Node congestion represents the number of non-overlapped
time slots, weighted by link throughput. Non-overlapped time
slots classify into three types: transmitting, receiving, and
deference?. The bottleneck of a relay network is the node with
maximum congestion. When the congestion of bottleneck
nodes decrease, camera streams get more network resources
to transmit at a higher bit-rate. Therefore, Spider’s routing
algorithm aims to reduce the congestion of bottleneck nodes
by picking up the routing plan R:

mml}gnlze g}lgé We, 2)

As shown in Equation 1, two major factors affect node
congestion. The first is link throughput. A higher throughput
link transmits more data given a certain amount of time. The
second is non-overlapped time slots. Fewer non-overlapped
time slots mean more time can be allocated to each time slot.
With these two insights, Spider’s routing algorithm routes
flows away from bottleneck nodes in the network by searching

2Deference flows are those a wireless radio can hear due to carrier sensing.



Algorithm 1: Spider’s flow routing

input :1) Relay network topology G =< C, L >
2) Interference map I
output :A flow routing tree R

1 R,Cost < ShortestPathRouting (G);
// Generate the initial flow routing

forest with shortest path algorithm
2 for i « 1 to Threshold do

3 PW « ComputeCongestion (R, G,I);
// Compute Path Congestion for every
node in the network
4 for Cp, € Cdo
5 for Cq € Cp.neighbor do
6 if PW|q] < PW|[p] then
7 Aco « Cost|q] — Cost[p] + (CEPY:CTq) ;
8 UpdateList.append((Aco, p, 9));

// Find possible reroutes to reduce
the path congestion of bottleneck
link

9 Aco, p, q < arg min (UpdateList);
Aco
10 Rp < q;

// Updates the route with least

increase in routing metric
un | Cost «UpdateCost (R,G);

for alternative high throughput and low congestion routes.

Routing algorithm. Based on the above insights, we design
a “generate-and-reroute” two phase flow routing algorithm
to minimize the maximal node congestion in the network. To
facilitate our presentation, we define the path congestion of
a node as the maximal congestion of all nodes in the routing
path from this node to the edge server.

Our flow routing algorithm (Algorithm 1) takes the inter-
ference map I and the relay network topology G =< C,L >
as the input. Interference map I records the list of peer nodes
that each camera node can overhear in the network. Camera
nodes carry sense the list of nodes that cause interference and
send periodic update to the edge server during runtime. In
the relay topology G, C is the set of nodes and L is the set of
possible connections.

Spider’s routing algorithm first builds a shortest path tree
from camera nodes to the edge server using Dijkstra’s al-
gorithm (Line 1, generate phase). The generated shortest
path tree ensures every node in the network achieves the best
pair-wise throughput to the edge server but usually leads to
over-congested nodes in the network. The algorithm then alle-
viates the radio congestion of the bottleneck node by shifting
nodes that contribute to its congestion to other routing paths
(Line 2-11, reroute phase). In each iteration, the algorithm
first re-computes path congestion (Line 3) and then selects a
reroute option that leads to a minimal increase of the node

ETT (Lines 4-9). The requirement for the minimal increase
of the node ETT ensures the alternative path also has a good
throughput. After that, the algorithm updates the routing tree
topology and cost (Lines 10-11). The algorithm terminates
when it reaches a pre-defined iteration threshold or there is
no path change that leads to a better congestion. The variable
Threshold in Line 2 is set to the sum of the number of feasible
wireless connections from each node, which ensures explo-
ration for every possible wireless connection. This algorithm
takes O(|L|?) iterations to construct the routing tree, where |- |
is the cardinality of the set. We experimentally demonstrate
the performance of Spider’s routing algorithm in §4.2.1.

Topology maintenance. The edge server collects the network
topology through the control plane to make a centralized rout-
ing decision. Specifically, Spider keeps two types of topology
in the data plane: long-term and instant. Spider constructs
and updates the long-term topology graph by measuring mm-
Wave link throughput between all pairs of nodes when there
are no link dynamics in the deployment site (e.g., when the
cashierless store closes at night as detected by the cameras).
The amortized overhead of updating the long-term topology
is reasonably low since it is only updated on a daily or weekly
basis. On the other hand, the instant topology only includes
links that Spider recently used/probed. Link throughput data
in instant topology is time-sensitive and is set to expire with
a time-to-live threshold. When making routing decisions, the
edge server combines both the instant topology and the long-
term topology. For links included in the instant topology,
Spider uses the link throughput from instant topology. For
the links that are not in the instant topology, Spider uses
throughput numbers from the long-term topology.

2.3 Video bit-rate allocation

Traditionally, video streaming algorithms adapt video bit-rate
based on its local buffer size and estimated network through-
put. Since the decision of these algorithms fully relies on lo-
cal information, the best coordination among multiple video
streams is a fair bandwidth allocation [22, 27]. In real deploy-
ment, however, some cameras desire higher bandwidth due to
their greater marginal benefits to the overall video analytics
accuracy. For instance, given two video streams with their
bit-rate-accuracy profile in Table 1, equal bandwidth sharing
of a 30 Mbps wireless link leads to an average accuracy of
(0.51 + 0.18)/2 = 0.345. However, allocating 10 Mbps to
Stream 1 and 20 Mbps to Stream 2 would achieve an overall
accuracy of (0.8 + 0.32)/2 = 0.56.

In light of this, Spider takes into account all camera streams
jointly in the design of its video bit-rate allocation algorithm
(Spider-VBA). To do so, the edge server periodically collects
video samples from camera nodes to compute bit-rate accu-
racy (i.e., resource-accuracy) profiles (§2.3.1). Spider-VBA
then formulates the problem as an optimization problem with
the input of both routing information and resource accuracy
profiles (§2.3.2) and generates video bit-rate configurations



Bit-rate (Mbps) 5 10 15 20 25

Accuracy (Stream 1) 0.04 032 0.51 087 1.0
Accuracy (Stream 2) 0.06 0.14 0.18 0.80 1.0

Table 1: Bit-rate-accuracy profile from two real video feeds.

for each camera using an integer programming solver (§2.3.3).

2.3.1 Resource-accuracy profiling. In order to compute
the resource-accuracy profile for video bit-rate allocation,
every camera node periodically sends 0.2 seconds full resolu-
tion and frame-rate videos to the edge server through the data
plane. Upon receiving these profiling videos, the edge server
applies various down-sampling combinations of their resolu-
tion and frame-rate, which we describe as knobs K; for the
ith camera, to form various resulting video bit-rates, T;(K;).
Then the edge server applies the video analytic model to each
profiling video for content analysis (e.g., object detection).
Spider calculates analytics accuracy, A;(K;), by following
the established practice of using results from the full reso-
lution video as the ground truth [26]. It then generates the
resource-accuracy profile: a set of pairs {(A;(K;), T;(K;))}.

The frequency of this resource-accuracy profiling affects
the performance of Spider: the more frequent, the higher
profiling accuracy Spider-VBA yields. However, frequent
profiling incurs high network cost due to the transmission
of video samples, resulting in reduced bandwidth for data
traffic and therefore lowered analytics accuracy. Experiment
in §4.4.2 shows that the optimal profiling frequency is once
every 20 seconds.

2.3.2 VBA problem formulation. In order to achieve the
best video bit-rate allocation, we formally formulate bit rate
allocation as an optimization problem. In a mmWave data
relay network G = (C, L), each camera node chooses a con-
figuration K to produce a video feed and forwards it together
with video streams from its child nodes to the edge server:

D; = Ti(K;) + Z Dj 3)
J,C;€C(i)
traffic produced by C; R ,
traffic produced by the descendent

where D; is the video stream to be forwarded by camera node

C;; C(i) is the set of children of node C;; T;(K;) is the bit-
rate of video produced by node C; at knob K;, which can be
calculated by resource-accuracy profiling. Our goal is to find a
proper configuration K; for each camera node C; to maximize
the overall video analytics accuracy defined below:

maximize Z Ai(Kp)/UC)
K Ci#CEgs (4)
subjectto  Ug, £ 1, C; € C.

where K = {Ki,Kj,..,K|c|} is the set of configuration
variables, respectively. A;(K;) is the accuracy of video from
camera nodes C; at configuration K;. U, is the radio utiliza-
tion of camera node C;, which is defined as the summation of

percentage of time slots to send all three types of flow (trans-
mitting, receiving, or deference as shown in Fig. 4) The radio
utilization U, should be less than 1 since the total percentage
of available time slots is less than 100%.

Uc ETT Dc; + ETT Dc; +

= c; ETT Dc,
(Ci,p(Ci)) i) (Cj.Ci) C el (Cr.p(Cyg))

transmitting

receiving deference

®

2.3.3 Spider-VBA Solution. Finding the optimal alloca-
tion plan for all camera nodes, unfortunately, is an NP-hard
optimization problem (as it can be reduced to the Knapsack
problem [17]). We omit the proof for the NP-hardness due to
space limitations. To solve the problem in an efficient way,
we reduce it to a mixed integer linear programming problem
and solve it with the standard mixed integer linear program-
ming solver [38]. We transform it into a mixed integer linear
programming (MILP) problem as follows:

maximize aij - ki /(|C)). 6
ir C;C; i ki /(€ (©)
where k;; is a binary variable that indicates whether camera
node C; chooses configuration j, and a;; is the analytics ac-
curacy when C; chooses j. This optimization problem should
meet the following three conditions.

(1) Configuration selection constraint. Each camera node
C; may only choose one configuration at a time: }; k;;j =
1. The amount of video traffic produced by a camera C;
ist; = Zj tij X kij, where t;; is the bit-rate of camera i
from configuration j. The video analytic accuracy of the
video from this camera is a; = Zj a;j X kij, where a;; is
the accuracy from configuration j.

(2) Flow relay constraint. For a given camera C;, the total
video traffic that needs to be transmitted by this camera
should equal the sum of its own video traffic and the video
traffic received from its descendants.

di =t + Z dj @)

Jj-Rj=i

(3) Node utilization. Similar to the utilization constraint in
Equation 4, node utilization should not exceed 100%:

ETT d;+

ETT dp <1 @8
Cip©) k ®

ETT d; +
2D (Cr.p(Ch)

ceay Y T ey

We then adopt the standard mixed integer linear program-
ming solver [38] to solve the problem. The MILP library
can solve the optimization for hundreds of nodes within one
second in our edge server.

2.4 Fault tolerance and network adaptation

Putting it all together, Spider’s design at network and appli-
cation layer allows it to deal with both link failures and node
failures, while at the same time maintaining high network
throughput for the purpose of live video analytics. For link
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failure on the data plane, Spider detects the abrupt data rate
change (e.g.,-30%) and reports it to the edge server through
control plane immediately. The edge server then re-runs the
routing and video bit-rate allocation algorithms and pushes
new receiver ID and video bit-rate configurations (based on
bandwidth allocation results) to each camera node through
the control plane. Once the camera node switches to another
link, it periodically checks the availability of the previous
(blocked) link using bounded exponential backoff [10] and
switches back when the blocked link recovers.

Control plane link failure recovery follows a similar pro-
cedure. Note that they are much less common in Spider com-
pared with data plane link failure as Wi-Fi links are less
susceptible to blockage. Once a camera node is unreachable
in control plane, the edge server cuts off the wireless links
to/from this camera immediately by issuing a request packet
to its parent and child nodes. At the same time, the edge server
reruns flow planning heuristics and updates routing and cam-
era configurations. After that, the edge server issues a thread
to wait for the re-connection request from the failure node.
Once the failed node returns, the waiting thread will update
its status in the routing table, and the edge server updates the
routes and camera configurations accordingly.

3 Implementation

We have implemented experimental prototypes of both the
Spider camera node and edge server, which we use in the
cashierless store scenario below in §4.

Camera node. Each camera node is a Dell E7440 laptop [15]
equipped with a Logitech BRIO 4K camera [35] and two Wi-
Gig radios:? a QCA9008 mmWave network interface card [5]
for transmitting, and a NETGEAR Nighthawk X10 router [39]
(802.11ac&ad dual band) for receiving. To reduce the asso-
ciation delay, 802.11ad band of all the routers is configured
into roaming mode that shares the same BSSID. Each node
uses the default beam selection mechanism in 802.11ad [23]
in the physical layer, and standard CSMA/CA with RTS/CTS
in MAC layer. In the control plane, all camera nodes connect

3Technically, one WiGig radio is needed per camera. However, as the
802.11ad Linux driver, wil6210 [58], does not support peer to peer mode as
yet, we adopt two WiGig radios as a proof-of-concept design.

to the edge server router (AP mode) with 802.11ac.

To increase the throughput of video forwarding, each cam-
era node tunnels the incoming video packets (from its child
node) by adding its IP address, and forwards it directly to
the next-hop receiver instead of using a software router [31].
Such a design offloads the majority of computation for packet
header processing from CPU to network interface card, and
therefore allows camera node to forward hundreds of con-
current video streams by processing incoming video traffic
at 2 Gbps using a single CPU core. The camera nodes en-
code their video stream into two-second length segments with
H.264 codec. To reduce network traffic, each camera also
invokes a background subtraction (BGS) [8] module as an
early filter to only send frames with moving objects. Video
forwarding logic and BGS module are implemented in C++
to ensure execution efficiency.

Edge server. The edge server is customized from Lambda-
labs [32] equipped with a 10-core Intel Core 19 CPU, and
two NVIDIA RTX 2080 Ti GPUs. Aside from Spider rout-
ing and Spider-VBA algorithms, it runs cascaded analytics
pipelines [34, 37] for efficient video processing. As a result,
Spider is able to process HD videos on one edge server at
370 fps, 45X faster than the baseline of running DNNs on all
video frames.

4 Evaluation

We present our experimental evaluation of Spider in this sec-
tion, with the following highlights:

(1) Given a target video analytic accuracy, Spider improves
the maximum-supported camera density by up to 2.76x
compared with best-performing comparison scheme.

(2) In the presence of network failures, Spider’s dedicated
control plane reduces failure recovery latency and nega-
tive impact on video analytic accuracy by 5.4-100x and
32% over baselines.

4.1 Experimental Methodology

Use Cases. We evaluate Spider in two use cases: cashierless
store and security monitoring. For the cashierless store ap-
plication, we use the testbed deployment shown in Fig. 6(a).
According to our estimation, a typical cashierless store (e.g.
Amazon Go [2]) has 0.25 cameras per square foot. To match
the density requirement of a real cashierless store, we con-
figure each physical camera nodes to send multiple virtual
camera streams so that the total number of streams sent in our
deployment testbed matches the expected number of streams
sent in a real cashierless store application. For security moni-
toring: we run trace-driven simulation based on the floor plan
of a 68,880 square feet enterprise building (Fig. 6(b)). The
security monitoring application needs a larger coverage but a
lower camera density compared with the cashierless store. If
we deploy cameras to cover every room of the floor shown in
Fig. 6(b), the camera density would be 4.5 cameras per 1,000
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Fig. 6— Floor plans of two experimental scenarios.

square feet. To run the trace based simulation, we calculate
link throughput based on the floor plan and mmWave sig-
nal propagation models [59, 66]. In addition, we incorporate
link blockages and failures into the simulation based on the
percentage of failure in the testbed.

Routing Baselines. Many works focus on mesh routing, but
few focus on mesh for mmWave,* so we pick the most repre-
sentative routing protocol for each of two different categories
of routing algorithm: max-throughput routing and shortest-
path routing:

¢ Roofnet [11] is a pioneering mesh network that aims to
maximize throughput and is used in products from Meraki
and Cisco.

e Batman [28] is a shortest path routing protocol imple-
mented in the official Linux kernel.

In addition to aforementioned routing protocols on mmWave
network, we also compare Spider with a baseline that streams
video with 802.11ac. In this baseline, the camera nodes di-
rectly connect to the edge server with single hop 802.11ac
Wi-Fi connections.

Video Bitrate Allocation Baseline. We use a fair video bi-
trate allocation (FVBA) as the baseline. FVBA is equivalent
to a centralized implementation of FESTIVE [27], which
allocates the fair bandwidth to each camera nodes through
control plane rather than letting each camera node run bitrate
adaptation distributedly.

Video analytics workloads. We evaluate Spider with three
representative video analytic workloads: object detection [46],
face detection [62], and scene text detection [65]. These
three workloads show different sensitivities to video knobs.
We follow the convention of the prior literature and use fully-
fledged neural networks as the ground truth to label videos (at
the highest resolution and frame-rate) [26]. We adopt the F/
score, a standard accuracy metric taking into account both pre-
cision and recall as the primary metric in our evaluation [26].

4We are aware of Facebook Terragraph as a mmWave based mesh network,
but we are not able to find its routing algorithm details in the existing literature
for comparison purpose.

Following convention in the Computer Vision community, we
consider an output bounding box as a true positive detection
only if the Intersection over Union (IoU) between the box and
the ground truth is above 0.5 [46].

4.2 Accuracy versus Density

We conduct a field study to answer the question: given an
accuracy requirement, what is the deployment density that
Spider can support?

For a wireless video camera network, a denser camera
deployment reduces the average video accuracy since each
camera share less wireless bandwidth to transmit its video.
We compare the maximum camera density by Spider and
baselines for a given accuracy requirement. For cashierless
store application, the density is the number of virtual camera
streams per 10 square feet. The security monitoring use case
has a larger coverage but lower density requirement. We mea-
sure its density by the number of virtual camera streams per
1000 square feet.

Fig. 7(a) compares the performance of Spider with three
baselines on three workloads for the cashierless store use case.
The baseline Roofnet+FVBA and Batman+FVBA are mm-
Wave camera networks that use Roofnet and Batman as the
routing protocols, respectively. The baseline 801.11ac+FVBA
builds the video network upon 802.11ac Wi-Fi. All baselines
use FVBA as the bitrate allocation mechanism. From the
figure, we observe that, as we release the accuracy require-
ment, the maximum camera density that a camera network
can support increases. Spider reaches the target camera den-
sity for a cashierless store (2.5 cameras per 10 square feet)
under the accuracy requirement of 0.8, 0.75, 0.65 for object
detection, face detection, and text detection workloads, re-
spectively. Roofnet+FVBA achieves the density of 1.7, 1.03,
and 1.82 cameras per 10 square feet for three workloads
and Batman+FVBA achieves the density of 1.46, 0.85, and
1.46 cameras per 10 square feet for three workloads under
the corresponding accuracy requirement. Spider improves
the camera deployment density by 1.46-2.76x compared
with Roofnet+FVBA and 1.74-3.34x compared with Bat-
man+FVBA. The improvement is even higher when compar-
ing with 801.11ac+FVBA.

We also compare the performance of Spider with three
baselines for the security monitoring use case. The target
camera density is 4.5 cameras per 1000 square feet. As Fig. 8
shows, Spider reaches the target density at the accuracy re-
quirement of 0.7, 0.7, and 0.5 for three workloads. Corre-
spondingly, Roofnet+FVBA achieves the density of 2.4, 1.86,
and 2.34 cameras per 1000 square feet for three workloads
and Batman+FVBA achieves the density of 2.32, 1.76, and
2.26 cameras per 1000 square feet for three workloads. Spi-
der improves the camera deployment density by 1.95-2.54%
compared with Roofnet+FVBA and 2.01-2.69x compared
with Batman+FVBA.
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In summary, Spider improves maximum camera deploy-
ment density by up to 2.76x compared with Roofnet+FVBA
and up to 3.34x compared with Batman+FVBA.

4.2.1 Ablation study. We conduct an ablation study to un-
derstand the effectiveness of each design component in Spi-
der. We use Roofnet+FVBA as the baseline system in the
study since it has the best performance among all baselines.

To evaluate the effectiveness of Spider’s routing algorithm,
we combine Spider’s routing (Srouting) with FVBA used in
the baseline. Similarly, we combine Spider’s video bitrate
allocation algorithm (SVBA) with Roofnet to evaluate the
contribution of Spider’s VBA algorithm. Fig. 8 shows the
performance of Srouting+FVBA and Roofnet+SVBA. We ob-
serve that Spider’s bit rate allocation algorithm has a slightly
higher contribution than Spider’s routing algorithm. Perfor-
mance gain brought by these two modules is as high as 55%
and 45%, respectively.

4.3 Robustness of Spider

We evaluate failures from two aspects: i) how fast Spider can
recover from a failure? ii) what is the impact of failure on
Spider’s accuracy? Similarly, we adopt Roofnet as the default
algorithm for comparison.

4.3.1 Failure recovery latency. When link failure happens,
the affected camera node has to search for a new node for
data forwarding. The latency, especially message propagation
latency, for this re-routing is critical to network scalability.
Table 2 shows average failure recovery latency in the testbed.
Spider is by 100X faster in message propagation and 5.4x
faster in total re-routing process (81-99% reduction in mes-
sage propagation latency and total re-routing latency respec-
tively). To further demonstrate the scalability of Spider, we



Link Failure Percentage

@ 20 , “ 20

> AR s sueeraireen > A S S N R B Rl el B -
L c I ‘__,"' \‘

@ 2| —  Spider g 2 . — Spider \

3 0.5 --- Roofnet - 0.5 --- Roofnet = Spider

§ OzA.MMMM/WAnA § 0.2 --- " Roofnet ““

£ 0 0.1 0.2 03 x O 100 200 300 102 051 2 5 10 20

Network size

Time (s)

(a) Latency of failure recovery versus link (b) Latency of recovery versus the size of (¢) The process of failure recovery under

failure ratio.

camera network under 10% link failure. 10% link failure.

Fig. 9— Failure recovery latency.

Algorithm Neighbor disc. Msg. prop. Re-asso. Total

Spider N/A 6ms 0.15s 0.15s
Roofnet 80ms 0.58s 0.15s 0.81s

Table 2: Time to recover from a single link failure in the
cashierless store testbed.
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Fig. 10— Video analytic accuracy under different link failure
percentages.

run simulation experiments on the floor plan shown in Fig. 6.

To understand the reliability of Spider compared with our
baseline, we intentionally include experiments with a wide
range of failure rates, from no failure to an extreme link fail-
ure rate (30%). We define the failure recovery latency as the
duration during which 95% percent of nodes recover from the
network failure. We then examine the failure recovery latency
of Spider and Roofnet in various settings. Specifically, we
focus on three aspects of failure recovery:

The impact of different percentage of link failure on re-
routing latency. We observe the re-routing latency on Roofnet
grows from 6.6 to 12 seconds with an increasing number of
failed links. In contrast, Spider achieves a relatively constant
re-routing latency (less than 0.2 seconds) as the number of
failure links grows from 1% to 30% (Fig. 9(a).

The impact of different network sizes on re-routing la-
tency. We observe the re-routing latency grows gradually on
Roofnet as the network size grows: from 2.4 to 7.8 seconds
as the number of camera nodes grows from 25 to 330. In
contrast, the re-routing latency on Spider maintains less than
0.2 seconds as the network size grows (Fig. 9(b)). This result
demonstrates that Spider is more scalable than Roofnet in the

presence of network failure.

The process of failure recovering. We observe that 10% of
link failures can lead to extra 40% of cascade failures to both
systems due to the relay architecture. However, Spider only
takes 0.2 seconds to recover from the failure. In contrast,
due to the overhead of broadcasting in the multi-hop data
plane, Roofnet starts recovery after 2 seconds and finishes at
7.8 seconds, taking 39x the time Spider uses (Fig. 9(c)).

4.3.2 Impacton accuracy. We use our simulation setup for
security monitoring, which it is easy for us to obtain a failure-
free baseline for comparison, to evaluate the impact of failure
on video analytics performance. When a link fails, cameras
that forward its stream through that link cannot send its video
streams, leading to degradation for average accuracy for the
whole video analytic network. We randomly shut down differ-
ent percentage of links and compute the average accuracy of
video streams of the overall video analytic network. For com-
parison, we also run Roofnet in the same network topology
settings. We show the impact of link failures in Fig. 10. As
expected, the average accuracy decreases with the growing
number of link failures. However, accuracy of Spider drops
much slower than Roofnet. This result demonstrates that fail-
ures lead to much smaller performance degradation in Spider
compared with Roofnet.

4.4 Sensitivity analysis

We conduct the sensitivity analysis to Spider from the follow-
ing perspectives.

4.4.1 Interference to legacy Wi-Fi users. We quantify the
impact of Spider control packets on legacy Wi-Fi users in
these experiments by comparing Spider with 802.11ac+FVBA
baseline. We put a legacy Wi-Fi device (a laptop) in our
cashierless store testbed and configure it to work on the same
channel as Spider’s control plane. This laptop ping a Google
server 1,000 times. We then measure the round trip time (RTT)
with and without launching Spider. Fig. 11(a) shows the CDF
of the RTT measurement. The 95% percentile of RTT is
6.6 ms when there is no control or video streams transmitted
over the 802.11ac Wi-Fi band (i.e., neither 802.11ac+FVBA
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Fig. 11— Impact of Spider’s control plane on legacy Wi-Fi users.

nor Spider is working). The 95% percentile of RTT grows
slightly to 6.8 ms when Spider transmits control packets over
the same Wi-Fi band. This result demonstrates that Spider
introduces negligible network delay (0.2 ms) to the legacy
Wi-Fi users. In contrast, the 95% percentile of RTT jumps
to 23.4 ms when 802.11ac+FVBA transmits video streams
over the same Wi-Fi band. Running 802.11ac+FVBA thus
introduces 16.2 ms extra delay, 81X higher than the latency
introduced by Spider.

We further quantify the impact of Spider’s control plane
on the peak network throughput that legacy Wi-Fi users can
achieve. In this experiment, we run iperf3 on the same Wi-
Fi device and record the uplink throughput every one sec-
ond. Fig. 11(b) shows the CDF of network throughput. We
observe that this legacy Wi-Fi device can achieve almost
the same network throughput regardless of the presence of
Spider. In contrast, 95% percentile of the peak throughput
drops significantly from 305.0 Mbps to 133.5 Mbps when
802.11ac+FVBA is running.

4.4.2 Impact of video profiling. Each camera node in Spi-
der periodically transmits profiling video segments to the edge
server over data plane. We vary the video profiling interval to
investigate its impact on the overall video analytics accuracy.
To facilitate our presentation, we define effective throughput
ratio as the ratio between the non-profiling video traffic and
the overall video traffic transmitted over the data plane. Short
video profiling interval would yield a more accurate resource-
accuracy profile, at the cost of a larger amount of profiling
traffic (i.e., lower effective throughput ratio). For comparison,
we assume there is an oracle transmitting video profiling sam-
ples on a different channel (i.e., does not share the mmWave
links with normal video streams). The result is shown in Fig-
ure 12. Spider’s average F1 score grows rapidly as we increase
the video profiling interval from 2s to 20s. This is because
the bandwidth allocated to non-profiling video streams grows
with increasing of video profiling interval. Nonetheless, Spi-
der fails to capture temporal variations of video content as the
profiling interval grows further. Accordingly, we observe the
average F1 score begins to drop at 20s interval settings. Spi-
der achieves 82.7% average F1 score in 20s interval settings,
0.5% lower than the oracle. At the same time, the effective

Fig. 12— Impact of video profiling interval on
accuracy.

Network size 50 100 200 300

Spider-Routing Time(s) 0.011 0.025 0.150 0.334
Spider-VBA Time(s) 0.578 0.590 0.629 0.680

Table 3: Time cost for Spider’s routing and VBA algorithm.

throughput ratio maintains at a high level (>99%). Suggested
by this result, we choose 20s as the default video profiling
interval in our design.

4.4.3 Computational cost. We present the computational
cost for routing and video bitrate allocation algorithm of
Spider. Table 3 shows the time cost of Spider-Routing and
Spider-VBA on the edge server. For a 300-node network,
the total time cost for two algorithm is around one second,
whereas the length of video chunk streamed in Spider is
two seconds. That means, Spider is capable to compute the
optimal configuration according to the network change for
every chunk of video streamed in its network.

5 Discussion and future work

Control plane coverage. Spider needs to ensure the control
plan coverage is not smaller than the data plane coverage.
While the Spider prototype uses single hop Wi-Fi as the con-
trol plane, the communication range of Wi-Fi does not funda-
mentally limit its scalability because, as the deployment area
scales up, Spider can use as its control plane an enterprise
Wi-Fi or wide-area cellular network. We leave the implemen-
tation and evaluation of these alternate control planes as future
work, but note that these designs require minimal changes,
well understood to yield both low latency and high reliability
control plane performance.

Topology maintenance overhead. While Spider’s topology
maintenance overhead (§2.2) may grow with greater mm-
Wave link dynamics from moving objects or people, Spider
only reacts to link failures or abrupt drops in throughput for
established mmWave connections, which, according to §4.3,
take ca. 0.15 s using our agile rerouting design.

Interference on mmWave band. Different from Wi-Fi, the
mmWave link communicates through highly directional beam.
The mmWave link will not interfere with other devices that



are not in its beamforming direction. Therefore, interference
from other devices has a much less impact on mmWave links.
We leave the medium sharing design between Spider and
other mmWave links into future work.

Computational load. There are two types of computational
loads when operating Spider system. One is the scheduling
load, which is to compute the optimal route and bitrate con-
figuration for each camera node. The other is video analytic
load. In our implementation, we run both computational loads
on a dedicated edge server (One CPU core for the scheduling
load and nine CPU cores plus two GPUs for the video ana-
lytic load). Given a less powerful edge server or more camera
nodes, we expect can still handle the scheduling load with
the computational resources on the edge server. The video
analytic load could be partially offloaded to the cloud. We
leave the offload between edge and cloud as the future work.

6 Related Work

Spider builds on a long tradition of network optimization and
upon recent advances in computer vision, machine learning,
and wireless communication.

Wireless video analytics systems. Live video analytics are
becoming more pervasive due to the increasing number of
cameras and the deployment of edge computing devices [21,
25, 26, 30, 60, 61, 63]. Among those works, wireless video
analytics systems like Vigil [63] and ZC?[60] demonstrate
flexibility in their deployment [60, 63]. In contrast, Spider
leverages a much higher throughput mmWave mesh, as op-
posed to the slower Wi-Fi or harder to deploy wired links
adopted by these systems.

mmWave networks. mmWave communication is emerging
as one of the key technologies in the 5G era. However, the
short communication range and high fragility of mmWave
links pose challenges in fully utilizing their bandwidth. Ef-
forts have been spent in the research community to model
mmWave networks [66], improve mmWave link coverage [54,
56, 57], reduce beam alignment and AP switching delay [20,
43, 64], and build multi-radio hybrid networks with Wi-Fi or
LTE [52]. mmWave has also been used to stream videos that
demand high bandwidth and low latency [9]. However, most
of these works focus on single hop mmWave links, while
Spider builds a relay network on top of mmWave and tackles
communication range and link dynamics issues to build a
useful video analytics system.

In addition, fast beam alignment algorithms [20, 43, 64]
cannot solve the problem of information broadcasting delay
in Spider. When a node A wants to connect to another node B
in the mmWave relay network. Node B might be busy with its
ongoing transmission, therefore node A has to wait unit the
ongoing transmission on node B finishes, which inevitably
introduces extra delays.

Wireless mesh networks. Multi-hop relay technologies have
been extensively studied in wireless mesh networks [11, 12,

16, 33, 55]. In the literature, there are two types of clustered
routing algorithms in relay networks: pro-active routing algo-
rithms [14, 45] and on-demand routing algorithms [29, 44].
However, both types of routing algorithms do not fit in Spider,
due to the overhead of message broadcasting in mmWave
mesh networks. Spider solves the problem by introducing a
dedicated long-range control plane to centralized decision-
making for routing.

There is also a relay network design based on 60 GHz
radios: Terragraph [55]. Unlike Terragraph’s focus on network
throughput optimization, Spider focuses on application-driven
metrics, maximizing video analytics accuracy through a joint
optimization of network flow and application configuration.
In addition, Terragraph targets deployments with more stable
link dynamics, e.g. cell towers, roofs, which are well above the
ground and thus less likely to experience blockage. Therefore
Terragraph can transmit its control packets through mmWave
links without harming overall performance. In contrast, Spider
may be deployed for applications with frequent mmWave link
blockages (cashierless stores, where camera nodes might be
deployed in locations that can be cut off as customers walk
by). To solve the blockage issue, Spider takes a different
approach in network architecture design, which separates
low-frequency control plane for network control.

Software-Defined Wireless Networking. Decoupling con-
trol plane from data plane has been explored in the wireless
networks as well [13, 49, 50]. However, all these works as-
sume the control plane residences at the same frequency band
as data plane, and thus shares the same physical propagation
characteristic. In contrast, the control plane and data plane in
Spider are decoupled over frequency. This allows Spider to
transmit control packets over robust wireless links at a lower
frequency, and data packets over high-throughput links at a
higher frequency.

7 Conclusion

We have built Spider, a live video analytics system based
on multi-hop, mmWave relay network. With the objective
of maximizing the overall video analytics accuracy, Spider
proposes to integrate a separate low-latency Wi-Fi control
plane with the high-throughput mmWave data plane, which
allows the edge server to timely schedule the network routing
and video bit-rate allocation. We have implemented a pro-
totype of Spider and conduct both real-world experiments
and large-scale simulations. Results show that Spider dramat-
ically improves video analytics accuracy, improves system
robustness, and reduces interference to existing users.
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