
Group-based Discovery in Low-duty-cycle Mobile
Sensor Networks

Liangyin Chen∗, Yu Gu†, Shuo Guo§, Tian He§, Yuanchao Shu‡†, Fan Zhang‡ and Jiming Chen‡
∗College of Computer Science, Sichuan University
† Singapore University of Technology and Design

§Department of Computer Science and Engineering, University of Minnesota
‡ Department of Control, Zhejiang University

Abstract—Wireless Sensor Networks have been used in many
mobile applications such as wildlife tracking and participatory
urban sensing. Because of the combination of high mobility and
low-duty-cycle operations, it is a challenging issue to reduce
discovery delay among mobile nodes, so that mobile nodes can
establish connection quickly once they are within each other’s
vicinity. Existing discovery designs are essentially pair-wise based,
in which discovery is passively achieved when two nodes are
pre-scheduled to wake-up at the same time. In contrast, for
the first time, this work reduces discovery delay significantly
by proactively referring wake-up schedules among a group of
nodes. Because proactive references incur additional overhead,
we introduce a novel selective reference mechanism based on
spatiotemporal properties of neighborhood and the mobility of
the nodes. Our quantitative analysis indicates that the discovery
delay of our group-based mechanism is significantly smaller
than that of the pair-wise one. Our testbed experiments using
40 sensor nodes confirm our theoretical analysis, showing one
order of magnitude reduction in discovery delay compared with
traditional pair-wise methods with only 0.5%∼8.8% increase in
energy consumption.

I. INTRODUCTION

Wireless Sensor Networks have been proposed for use in
many challenging applications, such as military surveillance,
scientific exploration and structural monitoring. Sustainable
deployment of these systems calls for energy-efficient designs.
Extensive research has indicated that energy in low-power
sensors is consumed mostly by being ready for potential
incoming packets, a problem commonly referred to as idle
listening. For example, the widely used ChipCon CC2420
radio [1] draws 19.7mA when receiving or idle listening,
which is actually larger than the 17.4mA used when trans-
mitting. More importantly, packet transmission time is usually
very small (e.g., about 1 millisecond to transmit a TinyOS
packet using a CC2420 radio), while the duration of idle
listening for reception can be orders of magnitude longer.
For example, most environmental applications, such as Great
Duck Island [15], sample the environment at relatively low
rates (on the order of minutes between samples). With a
comparable current draw and a 3∼4 orders of magnitude
longer duration waiting for reception, idle listening is a major
energy drain that, if not optimized, accounts for most energy
in communication.

Therefore, the most effective energy conservation technique

is to reduce duty-cycle by listening briefly and shutting down
radios most of the time (e.g., 99% or more). Such a simple
low-duty-cycle operation, however, leads to a challenging
issue: how nodes within physical vicinity can discovery each
other if they listen to the channel in an asynchronous manner.
This issue becomes even more challenging when low-duty-
cycle operation is combined with the mobility of sensor nodes
in many applications such as in ZerbraNet [7], opportunistic
data collection (SNIP) [19] and urban sensing [5]. Because
mobility invalidates many assumptions implicit in low power
static designs [4], such a combination imposes a time con-
straint on how fast nodes shall finish discovery before they
are physically disconnected.

Node discovery in low-duty-cycle network has attracted
research attention in recent years. Previous works mainly focus
on how to ensure a pair of nodes can wake up simultaneously
through a certain type of scheduling algorithms. Notable
discovery designs include: stochastic-based protocols [2], [13],
quorum-based protocols [11], [12], [16], [20], Disco [3] and
U-Connect [8]. These designs successfully ensure that a pair
of nodes finish discovery within a bounded delay. Although lit-
erature is encouraging, we believe there are rooms to improve.
Specifically, we notice all existing designs essentially are pair-
wise based. Discovery is achieved only when two nodes are
pre-scheduled to wake-up simultaneously. However, if nodes
can share their known schedules with each other, discovery
can be achieved in a more proactive and fast manner with
small overhead.

This paper presents a Group-based Discovery method as
a performance add-on to existing pair-wise mobile discovery
designs. It essentially builds a schedule reference mechanism
among nodes to expedite the discovery process. The operation
of schedule reference is straightforward. For example, after
node A discovers node B using a traditional pair-wise method,
node B can proactively refer (push) the wakeup-schedules of
its known neighbors (such as node C) to node A. Consequent-
ly, node A can quickly discover node C indirectly via node
B. Clearly, excessive reference operations would introduce
high overhead in communication. The challenging issue of
our work is to design a selective reference mechanism to trade
off between reducing discovery delay and overhead to achieve
that.

2012 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks
(SECON)

978-1-4673-1905-8/12/$31.00 ©2012 IEEE 542

In summary, our contributions are as follows:
• To the best of our knowledge, all previous work focuses

on scheduling designs for pair-wise discovery. We inves-
tigate how group-based discovery can reduce discovery
delay with small overhead. We are the first to provide
theoretical analysis of group-based discovery delay for
mobile low-duty-cycle networks and compared with pair-
wise one.

• Utilizing spatiotemporal properties of neighborhood, we
propose a selective reference mechanism that can avoid
unnecessary references while still speeding up overall
discovery process.

• We implement and evaluate our design in a physical test-
bed consisting of 40 nodes, indicating that our design is
suitable for resource constrained sensor nodes. One order
of magnitude reduction in discovery delay indicates our
design is very effective for mobile sensor network with
high density.

The rest of the paper is organized as follows: Section II
discusses the related work. Section III introduces the network
model and assumptions. Section IV introduces the basic design
and makes a theoretical analysis of discovery delay. Section V
introduces an advanced selective reference design. Section VI
presents the experiment results using a 40-node testbed. Sec-
tion VII concludes the work.

II. RELATED WORK

Node discovery is nothing new and has a rich literature
in both ad hoc and wireless sensor networks. Discovery in
always-awake networks mainly focuses on network models
with directional antennas [17], [6], [18], while solutions for
discovery in duty-cycled networks are highly diverse, especial-
ly in mobile environments which impose time constraints on
how fast discovery should be finished. Notable ones includes:
stochastic-based protocols [13], [2], quorum-based protocol-
s [16], [20], [12], [11], Disco [3], U-Connect [8], multi-
channel discovery [9] and collision-aware discovery [10]. In
birthday protocol [13], nodes listen, transmit or sleep in a
probabilistic round-robin fashion, which statistically trades
off between discovery energy with discovery latency. Due to
the stochastic nature of its operation, there is no guarantee
on the worst-case discovery latency. Quorum-based protocol-
s [16], [20], [12], [11] address this limitation by ensuring
existence of overlapped wake-up durations between pair-wise
nodes within a bounded time. For instances, in [16], Tseng
construct a m×m grid matrix within contiguous slots. A node
arbitrarily picks one column and one row of entries from the
matrix to transmit and receive, respectively. Since m is a global
parameter, all nodes are required to operate in a symmetric
duty cycle setting (i.e., all nodes consume same amount of
energy for discovery purpose). To support asymmetric duty-
cycle setting, Zheng et al. [20] apply optimal block designs
using difference sets to detect neighboring nodes in finite time
without requiring slot alignment. Based on their method, the
discovery problem in asymmetric duty-cycle setting reduces
to an NP-complete minimum vertex cover problem requiring

a centralized solution. To provide a distributed solution in an
asymmetric design, Disco [3] introduces a neighbor discovery
method based on the Chinese Reminder Theorem [14], in
which each node selects a pair of primes as period inde-
pendently based on the requirement of its duty cycle. For
example, if node i select Ti0 and Ti1 as its working periods,
after node i start to work, once its time counter can divide by
Ti0 or Ti1, it will wake up, or else be in sleep. In addition to
Disco [3], CQS-pair [12] and GQS-pair [11] present wakeup
scheduling schemes for heterogeneous quorum-based system.
Using heterogeneous quorums, nodes can have different cycle
lengths and hence different duty-cycle settings. Recently, U-
connect [8] proposes a unified neighbor discovery protocol
for symmetric and asymmetric duty cycle settings. Specifi-
cally authors show that U-Connect is an 1.5-approximation
algorithm for the symmetric asynchronous discovery scenario,
and the existing protocols such as Quorum and Disco are 2-
approximation algorithms.

Although neighbor discovery techniques are diverse, all of
them focus on pair-wise discovery. None of aforementioned
works investigate how to increase discovery probability and
decrease discovery delay by sharing schedule information
among a group of nodes during the discovery process. In this
work, we introduce a generic reference mechanism on top of
current discovery methods. It serves as a performance add-on
to existing discovery methods, therefore is complementary to
the state-of-the-art.

III. SYSTEM MODELS AND ASSUMPTIONS

In this section, we define the network model and as-
sumptions related to group-based discovery design for mobile
networks.

A. Network Model

We assume a network with n mobile nodes running under
a low-duty-cycle mode, i.e., a node remains dormant most of
time and becomes active only briefly (e.g., less than 5%) to
sense and communicate. When a node is in the active state, it
can receive packets transmitted from neighboring nodes. When
a node is in the dormant state, it turns off all function modules
except a timer for the purpose of waking itself up. In other
words, a node can wake up to transmit a packet at any time,
but can receive packets only when it is in its active state.

The working schedule of a mobile node denotes the active-
dormant behaviors of the mobile node over its lifetime. It
consists of a set of active instances, during which a node
can receive packets. Each active instance m at node i can
be represented by a tuple (tim, dim), where tim denotes the
starting time of the active instance and dim denotes the
corresponding duration of the active instance m. Since many
sensor node working schedules are periodic [3], it is often
sufficient to represent an infinite sequence of active instances,
using repeated subsequences with a period time Ti.

Let Γi be the working schedule of node i and the number
of active instances within a period be M , we can have

543

Γi = {(ti1, di1), (ti2, di2), ..., (tiM , diM)}. According to its work-
ing schedule, a node continuously transits its state between
active and dormant state. Therefore, the duty-cycle of node i

is
∑M

m=1
di
m

T
.

To simplify our description, in the rest of the paper we
assume all active instances have the same durations (τ). When
a node is said to be active at time t, it has an active instance
that starts at time t with duration of τ . We note that this
definition of working schedule can actually accommodate
active instances with varying durations. Essentially, if we let
τ be the finest granularity of time durations, we can represent
any node schedule with the fixed τ .

B. Neighbor Discovery Model

For two neighboring mobile nodes i and j to discover each
other, they need to be within each other’s communication
range and their active instances shall at least partially overlap
in time (note strict alignment of time instances is not required).
Formally, let the duration that two nodes i and j are within
each other’s communication range be [t, t + Δt], and the
working schedule of node i and node j during this Δt time be
ΓΔt
i and ΓΔt

j respectively, then these two nodes can discover
each other if ΓΔt

i ∩ ΓΔt
j �= ∅. The discovery times are the

elements in the set ΓΔt
i ∩ ΓΔt

j . For example, if node i and
node j are within each other’s communication range during
time [100, 200], and the active instances of node i and node
j during this time interval are {135, 178} and {116, 178},
respectively. Then node i and node j will be able to discover
each other during this encounter at time 178. We note similar
to legacy pairwise methods (e.g., Quorum [16], [20], [11],
[12], Disco [3] and U-Connect [8]), by sending two discovery
messages at both beginning and end of an active instance,
we can ensure discovery in the presence of clock skew/drift
without the assumptions of time synchronization and aligned
time instances.

IV. BASIC GROUP-BASED DISCOVERY DESIGN

In this section, we introduce the basic design of group-based
discovery and quantitatively compare our group-based discov-
ery design with legacy pairwise node discovery approaches.
Since legacy pairwise designs have effectively handled mobil-
ity in the network, in this section, we focus on explaining how
our group-based discovery can reduce discovery delay in the
network.

A. The Design for Group-based Discovery

In traditional pairwise discovery methods for low-power
wireless mobile devices, a node is able to discover a neigh-
boring node if and only if it wakes up at the same time as
its neighboring node (such as Disco). Different from pairwise
discovery, in our group-based discovery design, we let indi-
vidual nodes actively share their existing neighbors’ working
schedules with the new node that they have just discovered. In
this way, the new node can quickly become aware of the wake-
up times of surrounding nodes and actively verify whether it
can communicate with those nodes at their wake-up times.

����� �

�

	� 	� 	� 	���

	�
�������������������

�

� ����
�������������������������

�

�������������������������

�

�

�

��

�

���

�

�� ��

 ���!���"��#�$��%&� '�(����"��#�$��%&�)����*+� ���!�&,

�

-�%+

Fig. 1. Design of Group-based Discovery

Figure 1 shows the process of group-based discovery. With-
out loss of generality, we assume in Figure 1 except node i, all
other nodes have discovered each other and formed a group.
We note if the initial size of the group is one, group-based
discovery behaves the same as the pairwise discovery, because
no schedule reference is needed. With more than two nodes
in a group, our group-based discovery follows the following
steps:

1) For an individual node in the network, according to
its working schedule, it will periodically become active
during its wakeup time instance and broadcast its exis-
tence with its own working schedule. In Figure 1, this
is denoted by broadcasting message 1 and 2 from node
i and node j, respectively (as a reminder, two messages
are needed to accommodate time drift). At time t0, two
nodes i and j wake up with partial overlap and are within
each other’s communication range, upon successful re-
ception of each other’s broadcasting message, these two
nodes discover each other and become aware of each
other’s working schedule.

2) As node j has already discovered its group and is aware
of the working schedules of other nodes in the group,
it will wake up at the next active instance of node i

(time t1) and send the working schedules of all others in
the group to node i. Here we call this neighbor sharing
message as the reference message, which is shown as
message 3 in Figure 1. The node j, which sends out
this reference message, is called referring node. And
for those nodes included in the reference message, we
call them referred nodes.

3) Upon the reception of the reference message, node i

starts to verify one by one whether the referred nodes
from node j are indeed its own neighbors. We note
verification can be done silently without additional mes-
sages. Figure 1 shows how verification is conducted:
if node k is the node that wakes up first after node i

has received the reference message, node i wakeup at

544

the next active instance of node k (time t2), trying to
receive broadcasting messages from the node k. Upon
reception, node i confirms that node k is indeed within
its communication range and adds node k to its neighbor
table. This verification step continues until node i has
finished verifying all referred nodes from node j.

� � � . / 0 1 2 3 �� �� ��

�

4

4�%���
�� �.�. �/

 ���!���"��#�$��%&�

'�(����"��#�$��%&�
)����*+� ���!�&,

Fig. 2. An Example of Group-based Discovery
Case Study: Figure 2 shows a case study of group-based
discovery process for nodes A, B and C, which are all
physically within each other’s communication range. Firstly,
as both B and C wake up at time 1, they discover each other
at time 1 and form a group. Then at time 4, node A and node
B wake up simultaneously and become aware of each other.
After node B discover both node A and node C, it proactively
wakes up at time 9 when node A is scheduled to be active, and
notifies the working schedule of node C to node A. Finally
at time 12, node A wakes up and silently verifies whether
node C is its neighbor or not. After time 12, node A has
discovered both node B and C. In contrast, if we adopt the
pairwise discovery approaches [3], node A can discover node
B and C only after time 34.

B. Qualitative Comparison: Group-based vs. Pairwise

This section proves qualitatively the performance gain of
the group-based discovery method over the traditional pairwise
discovery in terms of discovery delay.

For a pair of neighboring node i and j, assume the duration
that they are within each others communication range is T .
Let Q be a superset of non-empty subsets under Z+n. Each
element Γi in Q is the wake up schedule of node i running
a certain pairwise discovery algorithm. Let C be the set of
possible discovery times between node i and j, we have
C = Γi ∩Γj . Accordingly, the first discovery delay is minC.
Suppose the group-based reference mechanism adds additional
wake-up instances to node i, so that it can proactively discover
other nodes by augmenting the original schedule Γi to Γ‘

i. The
new set of possible discovery times between node i and node
j therefore is C ‘ = Γ‘

i ∩ Γj . Since Γi ⊆ Γ‘
i, clearly C ⊆ C ‘.

Therefore the pairwise discovery delay minC is larger than
or at least equal to the group-based discovery delay minC ‘.

C. Analytic Comparison: Group-based vs. Pairwise

In previous section, we qualitatively prove that the group-
based discovery design always has smaller or equal discovery
delay than that of the pairwise discovery solutions (note
the chance of equal discovery delay is extremely small).

In this section, we quantitatively compare the difference of
discovery delay between pairwise and group-based discovery
methods. Without loss of generality, we choose Disco [3]
as the underlying pairwise discovery design. Similar deriva-
tion can be applied to the existing discovery design as
well [13], [2], [16], [20], [12], [11], [8].

For pairwise discovery methods such as Disco [3] and U-
Connect [8], they ensure that a pair of neighboring nodes i

and j can discover each other within a bounded time Ti,j .
Since pairwise discovery methods guarantee a pair of nodes
can discover each other within a bounded time Ti,j , if they are
within each others communication range and t ≥ Ti,j , node i

and node j can discover each other with 100% probability.
Before time Ti,j , the probability that node i and node j

discovers each other can be represented by f(i, j, t), no matter
it is uniformly distributed or not. Consequently, to represent
the probability that a new node i discovers a node j in the
group before time t, we can use the following equation:

Pij(t) =

{
f(i, j, t),t ∈ [0, Ti,j)

1,t ≥ Ti,j

(1)

Then for pairwise discovery methods, the probability distri-
bution function for node i discovering all n nodes in the group
before time t can be represented as Pp(t) =

∏n−1
j=0 Pij(t). The

corresponding probability density function is:

pp(t) =

n−1∑
j=0

[Pij(t)
′

n−1∏
k=0,k �=j

Pik(t)] (2)

To calculate the expected time for node i discovering all n
nodes in the group, we have:

tp = Ep(t) =

∫ Tmax,i

0

tpp(t)dt

=

∫ Tmax,i

0

t

n−1∑
j=0

[Pij(t)
′

n−1∏
k=0,k �=j

Pik(t)]dt

(3)

where, Tmax,i = Max(Ti,0, Ti,1, ..., Ti,n−1).
For the group-based discovery method, the probability that

a new node i discovers one of the node in the group before
time t is Pg(t) = 1 −∏n−1

j=0 (1 − Pij(t)). The corresponding
probability density function therefore can be represented as:

pg(t) =

n−1∑
j=0

[Pij(t)
′

n−1∏
k=0,k �=j

(1− Pik(t))] (4)

The expected time for node i discovering at least one node
in the group is:

Eg(t) =

∫ Tmin,i

0

tpg(t)dt

=

∫ Tmin,i

0

t

n−1∑
j=0

[Pij(t)
′

n−1∏
k=0,k �=j

(1− Pik(t))]dt

(5)

545

Where Tmin,i = Min(Ti,0, Ti,1, ..., Ti,n−1). After node i

discovers a node, say node j in the group, according to our
group-based discovery design, node j would share working
schedules of all nodes in its group with node i. Then node i

proactively wakes up at the active instances of non-discovered
nodes in the group. Consequently, as long as all those non-
discovered nodes in the group wake up at least once after
node i and node j having discovered each other and node i

knowing schedules of nodes in the group, node i would have
discovered all nodes in the group. The maximal total time for
node i discovering all n nodes in the group therefore can be
expressed by the following formula:

tg ≤ Eg(t) + 2Max(Tgap) ≤ Eg(t) + 2T (6)

Where Tgap is the time gap between two consecutive
wakeups of a node pair, which is smaller than a period T . After
the first discovery, in the worst case, a node takes another two
Max(Tgap) delay to finish reference and verification.

D. Numeric Comparison: Group-based vs. Pairwise

Based on Equations 3 and 6, we can now numerically
show the performance difference in discovery delay between
the group-based design and Disco. In Disco, each node i

has two independent prime periods (Ti0, Ti1). The discovery
probability of node i (Ti0, Ti1) and j (Tj0, Tj1) can be
viewed as uniformly distributed within Ti,j . And Ti,j =

Ti0Tj0Ti1Tj1

Ti0Tj0+Ti0Tj1+Ti1Tj0+Ti1Tj1
, which is the expected bounded

time that node i and j discover each other. Then, we can
represent discovery probability as Equation 7.

Pij(t) =

⎧⎨
⎩

t

Ti,j

,t ∈ [0, Ti,j)

1,t ≥ Ti,j

(7)

We set a 2 − 20 nodes network with duty cycle changing
from 1.4% to 0.7%, and they all have already known each
other’s schedules. Then, there is another node, whose duty
cycle is 1%, moving close to the group to discover those nodes.
Figure 3 shows the discovery delay for Disco and group-
based discovery designs under different numbers of nodes.
From Figure 3, we can see under all numbers of nodes,
the discovery delay of our group-based discovery design is
much smaller than that of the Disco discovery design’s. For
example, when the number of nodes is more than 15, the
delay of pairwise discovery is more than 10 times longer
than our group-based method. More interestingly, we observe
that as number of nodes increases, the discovery delay for
our group-based discovery method actually decreases while
the discovery delay for pairwise discovery design increases
almost linearly with the increasing number of nodes. This is a
clear indication that group-based discovery scales well when
a network becomes very dense.

V. ADVANCED GROUP-BASED DISCOVERY DESIGN

In Section IV, we introduce the basic concept of group-
based discovery. In Basic design, we have a node j announces

 0 5 10 15 20
0

2000

4000

6000

8000

10000

Number of Nodes

D
el

ay
 (

un
it)

Group
Disco

Fig. 3. Delay Comparison of Disco and Group Discovery

all its neighbor information to node i that it has just discov-
ered. This simple solution ensures that the node i newly added
into the group would have a complete picture of nodes in
the surrounding area, however this would also waste energy
unnecessarily, because not all known nodes of node j are
neighboring nodes of node i.

In this section, we introduce a selective reference mecha-
nism exploiting spatiotemporal properties of mobile nodes in
the network. It is based on a simple rule: node B should avoid
referring the schedule of its neighbor node (say C) to node A,
if node C is not a neighbor of node A. This is because that
node A cannot communicate with a non-neighboring node C
physically, even after node A knows its wake-up schedule.
Following this rule, we can reduce the reference overhead
of the referring node B, while still expediting the neighbor
discovery process of A.

A. Spatial Selection

In this section, we provide theoretical foundation for re-
ferring neighboring nodes based on spatial properties. The
main idea of this spatial selection design is to estimate the
closeness (or proximity) of two neighboring nodes based on
the number of common neighbors they share. It is noted that
spatial selection does not require calculating the exact distance
between two nodes, the estimated distance between two nodes
(using neighbor information) merely serves as an indicator of
the closeness of two nodes. In the rest of this section, we use
the terms distance and closeness interchangeably.

According to this estimated closeness among different mo-
bile nodes, we then are able to selectively choose the most
appropriate neighbors to refer to the newly discovered mobile
node and reduce energy consumption for our group-based
discovery design.

1) Theoretical Foundation: Intuitively, when two mobile n-
odes are closer to each other, it is more likely they would share
more common neighboring nodes. For the purpose of theoreti-
cal analysis, here we assume (i) uniform node distribution in a
node’s neighborhood, and (ii) unit disk communication model.
We note that relaxation of these assumptions only degrade the
performance of the protocol, but not the correctness of the
design. For example, we can use a conservative radius in the
unit disk communication model to increase the possibility of
neighborhood at the cost of fewer opportunities for reference.

546

��

4�((�������$5�� ����4�((�������$5��

Fig. 4. Overlapping Communication Region Example

As shows in Figure 4, under the assumption of local uniform
distribution, the number of common neighbors is proportional
to the size of the overlapping region between node i and node
j with a distance of lij . Let Nij(l) denote the number of
common neighbors, then we can have the following formula:

Nij(lij) =
λ

πR2
(2R2 arccos(

lij

2R
)− lij

√
R2 − (

lij

2
)2) (8)

where λ and R is the average node density and the commu-
nication range of the mobile device, respectively.

According to Equation 8, the closeness between two mo-
bile nodes monotonically decides the number of common
neighbors they have (assuming local uniform node density).
By comparing the neighbor table information of two mobile
nodes, we can easily find their common neighbors. Let Mij be
the number of common neighbors between node i and j, we
estimate the closeness between those two nodes by following
formula:

lij = N−1
ij (Mij) (9)

N−1
ij is the inverse function of the function 8.
Using Equation 9, we can estimate the closeness ljk between

referring node j and referred node k, as well as the closeness
lij between referring node j and the newly discovered node i

To calculate the probability that node j’s neighboring nodes
i and k are within each other’s communication range, let us
look at the illustration shown in Figure 5. From Figure 5, it is
clear that if node k falls within the overlapping communication
region between node i and node j, node k is a common
neighbor for node i and node j. Obviously, if we fix ljk and
lij, then node k can only be situated on the dashed circle. If
ljk + lij > R, node k is the common neighbor of node i and
node j, only if node k is located at the dashed circle segment
inside the circle i. According to the law of cosines, the angle

α in Figure 5 can be represented as α = arccos(
l2jk+l2ij−R2

2ljk lij
).

Then the probability that the referred node k by referring
node j is also the neighbor of node i can be expressed as:
2α
2π = 1

π
arccos(

l2jk+l2ij−R2

2ljklij
). When ljk + lij ≤ R, then it is

clear from Figure 5 that node k is always falling into the
overlapped region between node i and node j. Therefore, the
probability that node k is a common neighbor of node i and
j is 100% in this scenario.

By combining above two cases, we can have the following
equation to represent the probability that node j’s neighboring
nodes i and node k are also within each others communication
range as:

Pj,ik(ljk, lij) =

{
1
π
arccos(

l2jk+l2ij−R2

2ljklij
) ljk + lij > R

1 ljk + lij ≤ R
(10)

��
��

Fig. 5. Neighbor Probability of One Node’s Two Neighbors

Clearly, by setting different threshold values for
Pj,ik(ljk, lij), a node can selectively reference its neighboring
nodes to a newly discovered node, therefore tradeoff
among energy consumption, discovery delay and discovery
probability. For example, if system wants to reduce energy
consumption, we should set a high threshold value and
have the nodes in the network reference less neighbors for
discoveries. On the other hand, when system demands low
discovery delay, we should set a low threshold value.

2) Analysis of the Worst and Average Cases: Based on
the analysis above, in this section we study the worst and
average case that group-based reference would be helpful.
By taking the derivative of Equation 8, we have Nij(l)

′ =
λ(−2+ 5

4
(l
R
)2)

πR
√

1−(l
2R

)2
< 0. Consequently, Equation 8 is a monotoni-

cally decreasing function with respect to l. For example, when
l = 0, which means node i and node j are identically located,
we have Nij(0) = λ. In contrast, when l = R, we have
N(R) ≈ 0.391λ. This indicates even when node i and node j

are at the edge of their communication range (the worst case),
they still share about 39.1% of common neighbors.

In addition, when mobile nodes are uniformly distributed in
the network, the probability density function for the distance
between two neighboring nodes can be represented as:

p(l) =
2l

R2
(11)

Then the expected closeness between two neighboring nodes
is:

E(l) =

∫ R

0

p(l)l dl =
2

3
R (12)

Given this expected closeness of 2
3R between two neigh-

boring nodes, according to Equation 8, in the average case,
the number of common neighbors of two neighboring nodes

547

is approximately 0.5836λ . In other words, if node i and node
j are neighboring nodes, another node k which is the neighbor
of node i has about 58.36% chance to be the neighbor of node
j, a sufficiently large chance to motivate us to use the group-
based discovery method.

B. Temporal Selection

Due to the mobility, the neighborhood of a mobile node
i also changes dynamically. Therefore we need to have a
low-cost and systematic method to discard the stale neighbor
information for mobile nodes in the network. For group-
based discovery design, this discard of stale neighbor infor-
mation is particular important as it directly affects the energy
consumption for node discoveries. If a node is sending out
those stale neighbor nodes, it wastes its own energy for data
transmission, as well as the energy for the reception node
to verify those stale neighbors. In this section, we discuss
theoretical foundations for setting Time-to-live (TTL) values
for neighbor information in a mobile network.

&

���6� ���6�

&78&��!�9!��:�

&78&9�!�9!��:�

Fig. 6. Temporal Selection Example

Taking scenario in Figure 6 as an example, after time Δt,
node i and node j are still within the range of the dashed
circles. Assuming the velocity of node i and node j is vi and
vj respectively, we can calculate the closeness between node
i and node j after time Δt is within the range of [l − (vi +
vj)Δt, l + (vi + vj)Δt].

Let the max node velocity in the network be vmax, which is
an application-specific parameter set by users. As the closeness
l between two neighboring nodes i and j can be estimated by
Equation 9, the minimal duration for those two nodes moving
out each other’s communication range is R−l

2vmax
. So as long

as we set TTLij ≤ R−l
2vmax

, there is a high probability that a
neighboring node j of node i is still within its communication
range after they first discovered each other. Similar to the
threshold value for spatial selection, a smaller TTL value
leads to less energy consumption but also smaller discovery
probability. While a larger TTL value costs more energy, but
with larger discovery probability for mobile nodes.

VI. EXPERIMENT

In order to validate our group-based discovery design in
practice, we have fully implemented both basic and advanced
group-based discovery designs on the TinyOS/Mote platform
in nesC. To compare the performance of our group-based dis-
covery designs, we also implement Disco [3] on our platform.

A. Experimental Setup

During the experiment, we place up to 40 sensor nodes on
a 2.6m×2.6m square field. Figure 7 shows a picture of the

(a) One-Hop Scenario (b) Two-Hop Scenario

Fig. 7. The Testbed for the Experiment

testbed for the experiment. During the experiment, we do not
use any synchronization mechanism to synchronize the clock
among nodes in the network. Similar to Disco [3], each node in
the network randomly generates its working schedule based on
a designated duty cycle, and periodically wakes up according
to its working schedule. In our experiment, we set the duration
of one time instance to 200ms. The default duty cycle for the
network is 3%. And each cases run 3 times.

B. Performance Experiments

One-Hop Experiments: By using the maximum transmission
power for each node, all deployed nodes are within a one-hop
neighborhood. For one-hop experiments, we collect the data
after each node having discovered all its neighbors, i.e., the
percentage neighbor discovered is 100%.
Two-Hop Experiments: We reduce the communication range
of each node to 2m by decreasing its transmission power and
only 20 nodes are deployed. Each experiment lasts for ten
minutes, which is slightly longer than the maximum designed
bounded time for discovery.

1) Impact of Node Duty Cycles: The first experiment tries
to investigate the impact of duty cycle on system perfor-
mances. Figure 8 shows for both single-hop and multi-hop
experiments, discovery delay decreases for all three designs
when the duty cycle in the network increases. However, under
all duty cycles, the discovery delay for Disco is significantly
longer than the group-based discovery designs. For example,
for single-hop experiments, when the duty cycle is 2%, the
discovery delay for Disco is 261,320ms, which is over one
order of magnitude longer than that of the advanced design
(23,564ms). This result matches our theoretical analysis in
Section V quite well. As for energy, both Basic and Advanced
designs consume more than that by Disco due to additional
reference operations. For example, in one-hop scenario (Fig-
ure 8(b)), it is 3% in Disco, 11.8% in Basic, and 11.4% in
Advanced, and in two-hop scenario (Figure 8(d)), it is 3%
in Disco, 3.5% in Basic, and 3.1% in Advanced. We note in
one-hop scenario, we have a higher node density, therefore
more nodes need to wake up proactively for reference and
verification.

2) Impact of Packet Loss: The loss of packets would
increase the delay of reference and verification, consequently
increasing the discovery delay. In this experiment, we set the

548

 2% 3% 4% 5% 6%
0

1

2

3
x 10

5

Node Duty Cycle

D
is

co
ve

ry
 D

el
ay

 (
m

s)

Disco
Advanced
Basic

(a) Single-Hop Discovery Delay
vs. Duty Cycle

 2% 3% 4% 5% 6%
0%

5%

10%

15%

20%

25%

Node Duty Cycle

A
vg

. D
ut

y
C

yc
le

Disco
Advanced
Basic

(b) Single-Hop Discovery Energy
vs. Duty Cycle

 2% 3% 4% 5% 6%
0

0.5

1

1.5

2

2.5
x 10

5

Node Duty Cycle

D
is

co
ve

ry
 D

el
ay

 (
m

s)

Disco
Advanced
Basic

(c) Multi-Hop Discovery Delay
vs. Duty Cycle

 2% 3% 4% 5% 6%

2%

3%

4%

5%

6%

Node Duty Cycle

A
vg

. D
ut

y
C

yc
le

Disco
Advanced
Basic

(d) Multi-Hop Energy vs. Duty
Cycle

Fig. 8. Impact of Duty Cycle

20% 40% 60%
0

1

2

3

x 10
5

Packet Loss Ratio

D
is

co
ve

ry
 D

el
ay

 (
m

s)

Disco
Advanced
Basic

(a) Single-Hop Discovery Delay
vs. Packet Loss Ratio

20% 40% 60%
2%

4%

6%

8%

10%

12%

Packet Loss Ratio

A
vg

. D
ut

y
C

yc
le

Disco
Advanced
Basic

(b) Single-Hop Energy vs. Pack-
et Loss Ratio

20% 40% 60%
0

0.5

1

1.5

2
x 10

5

Packet Loss Ratio
D

is
co

ve
ry

 D
el

ay
 (

m
s)

Disco
Advanced
Basic

(c) Multi-Hop Discovery Delay
vs. Packet Loss Ratio

20% 40% 60%

3%

3.2%

3.4%

3.6%

Packet Loss Ratio

A
vg

. D
ut

y
C

yc
le

Disco
Advanced
Basic

(d) Multi-Hop Energy vs. Pack-
et Loss Ratio

Fig. 9. Impact of Packet Loss Ratio

 0% 20% 40% 60% 80%

0.4

0.6

0.8

Radio Range Irregularity

P
ro

ba
bi

lit
y

Disco
Advanced
Basic

(a) Discovery Probability vs.
Radio Range Irregularity

 0% 20% 40% 60% 80%

2

4

6

8

10
x 10

4

Radio Range Irregularity

D
is

co
ve

ry
 D

el
ay

 (
un

it)

Disco
Advanced
Basic

(b) Discovery Delay vs. Radio
Range Irregularity

 0% 20% 40% 60% 80%
0

1

2

3

4

5
x 10

5

Radio Range Irregularity

E
ne

rg
y

C
on

su
m

pt
io

n

Disco
Advanced
Basic

(c) Total Energy Consumption
vs. Radio Range Irregularity

 0% 20% 40% 60% 80%
0%

2%

4%

6%

8%

10%

Radio Range Irregularity

A
vg

. D
ut

y
C

yc
le

Disco
Advanced
Basic

(d) Actual Duty Cycle vs. Radio
Range Irregularity

Fig. 10. Impact of Radio Range Irregularity

packet loss ratio be 10%-60% by random dropping packets in-
tentionally in the testbed. Figure 9 shows the impact of packet
loss on discovery delay and energy consumption. Discovery
delay in Advanced and Basic is far less than that in Disco,
especially in the cases with higher packet loss ratio, such as
in 60% packet loss ratio case in one-hop scenario, the delay
of Disco is 307,420ms, nearly 20 times more than 16,348ms
of Basic and 16,888ms of Advanced. And the delay in the
Basic and Advanced designs keeps to be stable relatively,
but increases significantly in Disco. As far as the energy
consumption, packet loss does not affect the pair-wise method,
because broadcasting messages are not retransmitted. How-
ever, packet loss reduces energy consumption in Advanced
and Basic methods, because few reference messages will be
propagated further within a neighborhood.

3) Impact of Radio Irregularity: In our theoretical analysis,
we assume the unit disk communication model. However, pre-
vious works have shown that the radio communication range
is highly irregular [21]. Therefore it is critical to understand

the impact of radio Irregularity. Unfortunately, in a physical
test-bed, the degree of radio irregularity is difficult to control
and quantify. In this part of evaluation, we simulate the system
performance under different degrees of radio irregularity. We
set communication range to 100 meters and make the radio
irregularity change randomly from 10% to 100% [21]. As
degree of radio irregularity increases, we can see the discovery
probability for all three schemes decreases. For the discovery
delay, both pairwise and advanced discovery methods increase
as the degree of radio irregularity increases. However even at
about 80% degree of radio irregularity, compared with the
pairwise design, our advanced group design has about 5.6%
higher discovery probability, 18.7% lower discovery delay and
with 13.0% less energy consumption.

4) Discovery Percentage over Time: In this experiments,
Figure 11 plots the node discovery percentage over time in
one-hop scenario. Figure 11(a) shows that over 98% node
pairs have discovered each other before 1000s in the Disco
method, but it takes more than 4000s for the remaining 2%

549

0 1000 2000 3000 4000 5000

20%

40%

60%

80%

100%

Time (s)

D
i
s
c
o
v
e
r
y

P
e
r
c
e
n
t
a
g
e

Basic
Advanced
Disco

(a) Long-Tail Delay

0 4 8 12 16 20

20%

40%

60%

80%

100%

Time (s)

D
i
s
c
o
v
e
r
y

P
e
r
c
e
n
t
a
g
e

Basic
Advanced
Disco

(b) Discovery Percentage

Fig. 11. The Percentage of Discovery over Time

nodes pairs discovering each other. In contrast, Figure 11(a)
illustrates that there are nearly no long-tail for the discovery
time in both Basic and Advanced methods, a clear indication
that group methods are much better than the Disco method in
the worst discovery delay, thanks to our reference mechanism.
Figure 11(b) takes a close look at the first 16 seconds. It shows
that all node pairs in group designs have discovered each other
before time 16s, i.e. 100% discovery percentage, which is far
more than that in Disco (below 10%).

0 5 10 15 20
0.6

0.7

0.8

Node Density

P
ro

ba
bi

lit
y

Hotspot
Waypoint

(a) Probability vs. Density

0 5 10 15 20
1%

1.2%

1.4%

1.6%

1.8%

2%

Node Density

A
vg

. D
ut

y
C

yc
le

Hotspot
Waypoint

(b) Energy vs. Density

Fig. 12. Impact of Mobility Patterns
5) Impact of Mobility Patterns: In analysis, we assume

the mobile nodes in the network are locally uniformly dis-
tributed. In order to reveal the impact of different node
distributions, Figure 12 shows the performance using advanced
group discovery design under both random waypoint mobility
model(uniform node distribution) and hotspot mobility mod-
el(nonuniform node distribution). Figure 12(a) shows that by
increasing node density, the discovery probabilities for both
mobility models increase. However, the discovery delay is
shorter in the hotspot mobility model. This is because under
the hotspot mobility model, nodes are clustered in a few
locations in a network, allowing more group discovery among
neighboring nodes. And due to increased reference operations
under the hotspot mobility model, we also observe higher
energy consumption under the hotspot model over the random
waypoint model.

VII. CONCLUSION

This paper presents a Group-based Discovery method as a
performance add-on to existing pair-wise discovery designs.
It essentially builds a schedule reference mechanism among
nodes to expedite the discovery process of pair-wise discovery

designs. Our work is the first to provide theoretical analysis of
group-based discovery delay. We introduce the basic operation,
followed by an advanced group-based discovery design, which
selectively choose neighboring nodes for energy-efficient ref-
erence. We evaluate our designs in a physical test-bed. Com-
pared with the state-of-the-art pairwise solutions, our designs
show one order of magnitude reduction in discovery delay with
only maximum 8.8% increase in energy.

ACKNOWLEDGMENT

This research was supported in part by the US National Sci-
ence Foundation (NSF) grants CNS-0845994, CNS-0917097,
IBM OCR Fund, grant SUTD SRG ISTD 2010 002 and
SUTD-ZJU/RES/03/2011.

REFERENCES

[1] 2.4 GHz IEEE 802.15.4 / ZigBee-Ready RF Transceiver (Rev. B).
Available at http://focus.ti.com/docs/prod/folders/print/cc2420.html.

[2] S. A. Borbash, A. Ephremides, and M. J. McGlynn. An asynchronous
neighbor discovery algorithm for wireless sensor networks. Ad Hoc
Networks, 2007.

[3] P. Dutta and D. Culler. Practical asynchronous neighbor discovery and
rendezvous for mobile sensing applications. In SenSys’08, 2008.

[4] P. Dutta and D. Culler. Mobility changes everything in low-power
wireless sensornets. In HotOS-XII’09, 2009.

[5] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G.-S. Ahn,
and A. T. Campbell. The bikenet mobile sensing system for cyclist
experience mapping. In SenSys’07, 2007.

[6] G. Jakllari, W. Luo, and S. V. Krishnamurthy. An integrated neighbor
discovery and mac protocol for ad hoc networks using directional
antennas. Trans. Wireless Commun., 2007.

[7] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein.
Energy-Efficient Computing for Wildlife Tracking: Design Tradeoffs and
Early Experiences with ZebraNet. In Proc. of ASPLOS-X, October 2002.

[8] A. Kandhalu, K. Lakshmanan, and R. R. Rajkumar. U-connect: a low-
latency energy-efficient asynchronous neighbor discovery protocol. In
IPSN’10, 2010.

[9] N. Karowski, A. Viana, and A. Wolisz. Optimized asynchronous multi-
channel neighbor discovery. In Infocom’11, 2011.

[10] R. Khalili, D. Goeckel, D. Towsley, and A. Swami. Neighbor discovery
with reception status feedback to transmitters. In Infocom’10, 2010.

[11] S. Lai, B. Ravindran, and H. Cho. Heterogenous quorum-based wake-up
scheduling in wireless sensor networks. Computers, IEEE Transactions,
2010.

[12] S. Lai, B. Zhang, B. Ravindran, and H. Cho. Cqs-pair: Cyclic
quorum system pair for wakeup scheduling in wireless sensor networks.
Principles of Distributed Systems, LNCS, 2008.

[13] M. J. McGlynn and S. A. Borbash. Birthday protocols for low energy
deployment and flexible neighbor discovery in ad hoc wireless networks.
In MobiHoc’01, 2001.

[14] I. Niven, H. S. Zuckerman, and H. L. Montgomery. An introduction to
the theory of number. In John Wiley and Sons, 1991.

[15] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler.
An analysis of a large scale habit monitoring application. In SenSys’04,
2004.

[16] Y.-C. Tseng, C.-S. Hsu, and T.-Y. Hsieh. Power-saving protocols for
ieee 802.11-based multi-hop ad hoc networks. In INFOCOM’02, 2002.

[17] S. Vasudevan, J. Kurose, and D. Towsley. On neighbor discovery in
wireless networks with directional antennas. In INFOCOM’05, 2005.

[18] S. Vasudevan, D. Towsley, and D. Goeckel. Neighbor discovery in
wireless networks and the coupon collectors problem. In Mobicom’09,
2009.

[19] X. Wu, K. Brown, and C. Sreenan. Snip: A sensor node-initiated probing
mechanism for opportunistic data collection in sparse wireless sensor
networks. In INFOCOM’11, 2011.

[20] R. Zheng, J. C. Hou, and L. Sha. Asynchronous wakeup for ad hoc
networks. In MobiHoc’03, 2003.

[21] G. Zhou, T. He, and J. A. Stankovic. Impact of Radio Irregularity on
Wireless Sensor Networks. In MobiSys’04, 2004.

550

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

