This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Mobility Modeling and Data-Driven Closed-Loop
Prediction in Bike-Sharing Systems

Zidong Yang, Jiming Chen™, Ji Hu, Yuanchao Shu, and Peng Cheng

Abstract— As an innovative mobility strategy, public bike-
sharing has grown dramatically worldwide. Though it provides
convenient, low-cost, and environmental-friendly transportation,
the unique features of bike-sharing systems give rise to prob-
lems for both users and operators. The primary issue is the
uneven distribution of bikes caused by ever-changing usage
and (available) supply. This imbalance necessitates efficient bike
rebalancing strategies, which depends highly on bike mobility
modeling and prediction. In this paper, a trace-driven simulation-
based prediction approach is proposed by simultaneously taking
user mobility demand and real-time status of stations into consid-
eration. We extensively evaluate the performance of our design
with the dataset from one of the world’s largest public bike-
sharing systems located in Hangzhou, China, which owns more
than 2800 stations. The evaluation results show an 85 percentile
relative error of 0.6 for checkout and 0.4 for checkin prediction.
The preliminary results on how the predictions can be used for
bike rebalancing are also provided. We believe that this new
mobility modeling and prediction approach can improve the bike-
sharing system operation algorithm design and pave the way for
rapid deployment and adoption of bike-sharing systems across
the globe.

Index Terms— Bike-sharing, mobility modeling, flow predic-
tion, Monte Carlo simulation.

I. INTRODUCTION

IKE-SHARING System (BSS), as part of the shared

transportation and shared economy, has grown tremen-
dously in recent years. It provides a convenient, low-cost and
environmental-friendly means for last mile transportation in
the urban cities and attracts attention from both citizens and
government. It is reported that more than 500 bike-sharing
programs currently running in at least 49 countries with one
million shared bikes in 2015 [1], [2].

In addition to its advantages of reducing traffic congestion
and mitigating pollution, BSS features unique characteristics
compared with other forms of shared-use mobility. First, bike-
sharing differs from classic ride-sharing (e.g., carpooling) and
ride-sourcing (e.g., Uber and Lyft) in that bikes are typically
unattended. During vacant hours, bikes are concentrated at
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a group of stations where operations of checkin/checkout are
facilitated through a backbone network, i.e., an IT infrastruc-
ture that enables system management and monitoring. Second,
unlike conventional public transit (e.g., subways and buses)
which follows a regular schedule and pre-determined routes,
bike-sharing provides transportation on an on-demand basis
with a decentralized structure. These two distinct features,
however, pose characteristic challenges in BSS management
and optimization. One common problem, for example, is that
the system typically ends up with an uneven distribution of
bikes across the different stations (due to the uncontrolled,
uneven demand), often rendering the checkin or checkout
service unavailable at some stations where bicycle docks are
either fully occupied or empty.

This bike unbalance problem makes it necessary for bike-
sharing cities to employ costly bike redistribution, which is
typically performed by trucks or trailers driving around the
city, moving bikes among stations. To increase service avail-
ability and minimize redistribution cost, studies have been con-
ducted to improve these bike redistribution strategies based on
bike mobility models and predictions. Despite the researches
on bike usage patterns and global rental volume forecasts
(e.g., [3]-[7]) developing a fine-grained prediction model for
the optimal number of bikes that should be redistributed has
proven to be elusive, and has remained an open problem. The
primary technical challenge is that bike traffic is not only
highly dynamic and inter-correlated in both the temporal and
spatio domains, but is also further influenced by complex
issues such as timing and meteorology. In addition, users’
behavior is also coupled with the number of bikes/docks in the
stations. Existing works either do not consider the temporal-
spatio relationship among stations or ignore the impact of the
station stock on user behavior.

In this paper, we first establish a probabilistic temporal-
spatio mobility model to characterizes movements (or shifts)
between different pairs of stations and present a novel fine-
grained prediction framework for both checkin and check-
out traffic. Our work differs fundamentally from previous
approaches in that 1) we model BSS as a dynamic network and
predict the traffic by jointly considering the spatio-temporal
correlations among stations and additional time factors and
meteorology. 2) we view each station as an “agent” and
develop a simulation-based approach to capture the inter-
action among station status and users. Based on historical
data, we first combine random forest model with inter-station
transfer network to estimation the number of potential user
shifts in the near future. Then, the user shifts are instantiated
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as concrete trace records by sampling from the probabilistic
model. Finally, a dedicated trace-based simulator is designed
to predict stations’ checkin/checkout number by performing
discrete event simulation with the generated user shift records.
By using the simulator, the mutual inference between checkout
and checkin is characterized by changing the number of
available bikes/docks in each station, which forms a closed
loop between checkout and checkin events.

This paper is an extended version of the authors’ conference
paper [8]. We highlight the following three main contributions:

« We identify the mobility modeling problem and establish
a spatio-temporal dynamic network model for BSS by
taking into account the interactions among all stations;

« We proposed a data-driven closed-loop simulation-based
prediction framework for bike-sharing systems, which
systematically considers 1) the interaction between users
and stations; 2) mutual inference between checkin and
checkout;

o We evaluate the performance of mobility modeling
and prediction with the world’s largest public BSS
with more than 2800 stations and over 103 million
records [9], [10]. Compared with benchmark methods,
the proposed approach provides the best performance
with an 85 percentile relative error of 0.6 for checkout
and 0.4 for checkin prediction.

The remainder of this paper is organized as follows. We first
introduce the related works in Section II, followed by an
overview of our design in Section III. We then present the
proposed prediction approach along with the user mobility
model in Section IV. Section V presents an in-depth evaluation
of mobility modeling and prediction. In Section VI, we present
some preliminary results on applying the predictions in bike
rebalancing. Several insights and the future work are discussed
in Section VII. We conclude the paper in Section VIIIL.

II. RELATED WORK

Extensive research has been done to describe the nature of
bike-sharing systems, business models, how they have spread
in time and space and why they have been adopted [11], [12].
For example, Shaheen et al. [11] reviews the history, advan-
tages and inadequacies of bike-sharing systems across the
globe. Martin and Shaheen [12] evaluates transit modal shift
dynamics with the emergence of public bike-sharing. Com-
prehensive analysis and survey of city-scale bike-sharing
systems in Paris [13], New York [14] have also been
conducted.

Adoption of bike-sharing systems has motivated stud-
ies on system design optimization. The first line of work
focuses on the sensing of dynamics from bike-sharing system
data [5], [6], [15], which broadly consider two topics, namely
clustering and prediction. Most clustering approaches identify
mobility patterns in bike usage and partition the stations into
clusters based on their usage profiles [7], [16]. For instance,
in [3], two clustering techniques using activity statistics
derived either from the evolution of station occupancy or the
number of available bicycles along the day. Borgnat et al. [17]
use graphs to describe the similarity of usage profiles
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between pairs of stations for weekdays and weekends, which
is then analyzed using a community detection algorithm
for clustering. In contrast to clustering, the aim of prediction
is to forecast the occupancy of the stations or the network
state over time using time series analysis [6], Bayesian net-
works [3] and supervised regression model [18]. For instance,
Borgnat et al. [6] forecasts the global rental volume, whereas
Li et al. [7] infers the bike rental/return demand of a cluster
of stations based on historical checkin and checkout data.
Liu et al. [19] used a similar idea for prediction but they
use the KNN model. Chen et al. [20] proposed an RNN
based method for prediction. However, their method only
considers the self-correlation for each station. Liu et al. [21]
use point-of-interest (POI) data for improving the prediction
accuracy. The primary difference between our work and exist-
ing demand prediction works is that in previous work, they
usually ignored station stock status by implicitly assuming that
all predicted users could successfully checkin/checkout. How-
ever, this assumption could not be met when the bikes/docks
were not sufficient. For instance when a station is empty,
no predicted user can checkout a bike from it. To take the
stock information and the mutual interaction between checkin
and checkout into consideration, we proposed an event-driven
simulation-based approach.

Based on insights into usage patterns and bike trip demand
analysis, research has also been conducted to optimize the
placement of stations in bike-sharing systems [18], design
strategies for bicycle rebalancing [22], [23] and provide effec-
tive bike routing [24]-[26]. For example, Chen et al. [18]
and Garcia-Palomares et al. [27] solve the station placement
problem by estimating the potential trip demand using a
semi-supervised learning algorithm and a GIS-based method,
respectively. Raviv et al. [22] find truck routes by minimizing
an objective function tied to both the operating cost of the
vehicles as well as penalty functions relating to station imbal-
ance. Li et al. [28] propose a reinforcement learning method
for dynamic bike reposition. Bao et al. [29] use bike traces
for bike lane planning. The mobility model and prediction
mechanism derived in our work can be easily applied to other
bike-sharing systems and lay a solid foundation for the upper
layer design and optimization.

People also propose some trip-based approach for bike-
sharing simulation [30]-[35]. Jian et al. [30] use a Poisson
process to simulation the bike flow. Chemla et al. [31] consider
users’ maximal waiting time and utility function. The primary
difference between our work and exiting works is that they
did not consider prediction in their design. However, utilizing
simulation system for prediction is not a trivial problem
because it depends on accurate estimation of the users’ trip
intension.

In addition to bike-sharing data, traffic data also attract
research from various areas [36]. Researchers analyzed
human mobility based on other empirical data from taxi-
cabs [37], buses [38] and cellular data [39], [40]. Due to the
unique intrinsic properties such as the decentralized structure,
on-demand usage, and unattended vehicles in BSS, our work
provides a fundamentally different model from these designs.
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Fig. 1. Components of a bike-sharing system.

III. DESIGN OVERVIEW

This section provides a design overview, including prob-
lem formulation in Section III-A and design methodology in
Section III-B.

A. Problem Formulation

Two types of entities constitute a BSS (see Figure 1):
Active objects (users) and Reactive objects (bikes). Users
shift bikes from checkout to checkin operations, changing the
status (i.e., the number of docked bikes) of stations located
at different places. Conversely, the spatio diversity of stations
and bike availabilities also influence user behaviors. We call
a sequence of operations - bike checkout, movement and
checkin - a shift instance (SI). As can be seen from Figure 1,
Active objects and Reactive objects are coupled in both the
temporal and spatio domain. However, it is worth noting that
user activities in Active objects are mutually independent,
though subject to the change of time factors and meteorology.

Our objective is two-fold. First, we aim to model the mobil-
ity patterns of bikes in BSS. The mobility model characterizes
the spatio-temporal transition of bikes among stations. Second,
based on the mobility model, we aim to predict the number of
checkin/checkout users at each station in the future. Due to the
correlation among stations and the mutual influence between
Active objects and Reactive objects, our design consider both
parts simultaneously and propose a unified simulation-based
prediction framework.

B. Design Methodology

We observe from real-world BSS that two kinds of dynamics
are involved in the systems. For one thing, there exists
the interaction between users’ checkin/checkout behavior and
stations’ status (e.g., a user will fail to checkout/checkin a
bike when the target station is empty/full). For another, there
also exists complicated mutual influence between checkin and
checkout. For example, the number of checkout bikes will
certainly change the number of checkin bikes in the destination
stations while the checkin number can also influence checkout
by changing the number of available bikes.

As depicted in Figure 1, for one hand, despite the random
bicycle checkout time and location in each SI, bikes are bound
to checkin at certain stations (upper red arrow) and for another,
the stock status of stations will affect users’ checkout behavior
conversely (lower blue arrow) and the real-time stock is mainly
determined by the number of checkout/checkin users and the
station capacity.

This property motivates us to model mutual influence
between checkin and checkout as well as between users and

Station a
Station b
Station i
t_l_ t: §
Fig. 2. Basic framework of mobility model.

stations by keeping track of every individual event. For this
end, a data-driven trace-based simulation approach is proposed
to perform the prediction. Firstly, we develop a probabilistic
temporal-spatio model to describe the transfer relationship
among stations. Secondly, we combine the transfer model (for
the destination station and duration prediction) with random
forest model (for the source station and departure time pre-
diction) for synthetic traces generation. Thirdly, all generated
records are fed into a dedicated simulator, which keeps track of
all transition records and station stock changes. The number of
checkin/checkout users are predicted by counting the number
of successful checkin/checkout in the corresponding time slots.
Since the synthetic records are generated randomly, we adopt
the Monte-Carlo approach for final prediction. In other words,
the final result is the average of multiple runs of simulation.

IV. MOBILITY MODEL AND PREDICTION

A. Bicycle Mobility Modeling

In this section, we develop a mobility model to capture the
spatio-temporal transition of bikes. The model is established
based on the features of bike flows between different pairs of
stations in different time. For example, bikes flow into stations
in working areas in the morning on weekdays and flow out in
the afternoon. Therefore, we propose a statistical model, which
is based on historical checkin/checkout data. The model uses a
probabilistic framework to describe the spatio-temporal shifts
of bikes between various pairs of stations and estimates bike
checkin based on the online checkout records.

We first develop a probabilistic mobility model to char-
acterize the transfer probability from one station to another.
In other words, this model can predict a user’s destination and
trip duration given the station in which he/she checkout one
bike. Thus, two sets of parameters are estimated in this part:
1) the transfer probability; 2) the riding time, as illustrated in
Figure 2. Py ;1 is the probability for a bike, which checkout
at station b in time slot #; and checkin at station i finally.
fp.i denotes the distribution function of riding time from
station b to station i.

1) Station-Station Probability: According to our observa-
tion of the transition data, the station to station probability
may be time-variant. For example, the probability from the
residential area to the business area may become significantly
larger in morning rush hour on weekdays than other time
periods. Due to this property, we use P; j, to denote the
probability that one bike checkout from station i at time slot ¢
will checkin at station j.
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Fig. 3. CDF of trip duration between two stations.

It is also worth investigating how to efficiently update the
parameter P; j,. For one thing, if the time slot ¢ is too large,
the model will be less accurate since P;;, may be highly
volatile within a day. For another, if 7 is too small, the data will
be too sparse for probability estimation and also undermines
the performance of prediction. In the proposed mobility model,
we set the length of each time slot to one hour to get a proper
tradeoff.

In summary, we first group all trip records according to
their source station, destination station and time slot. Let N; j ;
denote the number of shifts from station i to station j at time
slot ¢ in the historical data. Then P; ;, is calculated by

Nij1
2 Nijii

Since P;j, may be different under different conditions
(e.g., weather and holiday). We compute P;;, for sunny
workdays, sunny holidays, rainy workdays and rainy holidays
receptively.

2) Trip Duration: Although the trip duration may be pretty
different from one user to another, it is observed from the data
that the distribution of trip duration is quite stable regardless
of the time slot #. As an example, the empirical CDF of trip
time from one station (9702) to another (9706) in the morning
and afternoon are shown in Figure 3 respectively. As we can
see, two curves are quite close.

Thus, from trip duration, we first group the SIs according to
their source and destination. Then, we estimate the distribution
function f;; for each group.

3) Model Visualization: In this part, we present a visualiza-
tion result based on our probabilistic transfer model to justify
its effectiveness. Here We present the spatio characters of
bikes flows according to our model. In Figure 4, we draw the
primary flow directions at 7:00 am according to the probability
and station locations. As can be seen from this figure, most
bike flows go to the downtown area of the city.

Pijr= (1)

B. Potential Trip Generation

In addition to the transfer model described in Section IV-A,
in this section, we propose a mechanism to generate user
potential trip demand in the near future, which lays funda-
mentals for our simulation-based Monte Carlo prediction.

The purpose of this section is to predict the entire
records in the near future. Each transition record consists of
checkout/checkin station id and the timestamp. In principle,
the checkout demand is determined by the users traffic desire,
but in contrast, the checkin demand can be viewed as the
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Fig. 5. Checkout number by time and temperature.

consequence of users’ checkout behavior. According to this
intrinsic property of BSS (each checkout is paired with a
checkin), we first predict users’ potential checkout demand
at each station using the Random Forest model along with
external features. Then, the destination and trip duration for
each checkout are randomly sampled from the mobility model.

1) Checkout Prediction: We apply random forest
theory [41] to model and forecast the checkout behaviors
based on historical SIs along with important features.
We utilize both online and offline feature to gain a more
accurate prediction result. The difference between offline and
online features is that most offline features can be gained in
advance (e.g., time and temperature) while online features can
only be accessed in real time (e.g., checkout/checkin number
in last time slot). The features we adopt are as follows:

a) Time factors: Although characteristics of checkout
actions differ among stations, they are all closely related to
time factors and show unique temporal patterns. We select the
four most significant time factors: day of week, time of day,
weekday and holiday.

b) Meteorology: Meteorology condition has a huge influ-
ence on user behaviors in BSS [7], [18], [42]. As is shown
in Figure 5, checkout numbers grow when people feel more
comfortable at higher temperatures. Similar patterns exist for
other meteorological conditions such as humidity, visibility
and wind speed. Nevertheless, these patterns vary with time
and across stations. For example, users’ checkout behaviors
are less influenced by weather conditions during peak hours.
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¢) Online checkout number: Despite the tight correlations
between users’ checkout behaviors and time factors as well
as the meteorological data, there exist checkout anomalies
that differ significantly from the results observed at the same
hours on other days. We notice that these anomalies are
caused by sudden changes of bike availabilities at stations. For
instance, bikes in surrounding areas run out very quickly with
large audiences coming from a stadium after a soccer game.
Also, the bike-sharing service becomes unavailable when dock
(or even station) failures happen. Since anomalies usually last
for a short period, we adopt an online feature of checkout
number from the previous time window. By incorporating this
feature, the model is capable of adapting to unexpected events
that dramatically change the bike availability at stations.

We combine all offline and online features mentioned above
to generate a feature vector f; for each time window ¢. Denote
the ground truth of checkout number for each time window
as r;, we combine feature f; and r; into a big vector x; =
(fy, ry) to train the model. The predicted number is rounded
to the nearest integer for the following record generation.

2) Entire Trip Generation: After generating the checkout
number for a specific station in a time window (e.g., 5 check-
outs from 8:00 am. to 8:30 a.m.), the exact leaving time
of each user is assumed to be independently and follows
uniform distribution (e.g., uniformly sample from 8:00 a.m.
to 8:30 a.m.).

Similarly, the destination and duration for one trip are
generated by sampled from the mobility model. For example,
if one user checking out from station i in hour #, his/her
destination is first sampled from P; ;,. Once determining the
target station j, the trip duration is sampled from f;;. The
expected arriving time is calculated by adding up the leaving
time and the trip duration.

C. Trace Based Prediction

Finally, the synthetic records generated above is fed into a
trace-based simulator to perform predictions.

We use an example to demonstrate how the simulator works.
To predicted the future checkin/checkout demand in time
window [f,t + A], the simulator is initialized with stations’
stock level at time 1;,,.

Without loss of generality, we consider shifts from station j
to station i as shown in Figure 6. All events can be classi-
fied into three classes according to their time stamps. Here,
we should consider two kinds of events: the real events that
checkout before #,,,,, but checkin after time ¢ and the synthetic
events that checkout during [z, ¢ + A].

The destination and trip time of both events are esti-
mated from the mobility model but for the former events,

the checkout time and station are actual while for the latter
events, this information is predicted by random forest model.

The simulator then processes the events in time order.
However, not all user demand can be satisfied (e.g., the station
can be empty for checkout or full for checkin). We use
an underlying user behavior model to cope with unexpected
events.

o If a user fails to checkout a bike, he/she will wait for at

most p seconds. Then the user will leave the BSS.

o If a user fails to checkin a bike, he/she will keep waiting

until there is a vacant dock.

The simulator follows the settings described above and
can keep track of all successful checkin/checkout events and
rejected users for each station.

Since the trip destination and duration sampled from the
probabilistic mobility model involve randomness, we utilize
the Monte-Carlo approach to gain a stable and reliable pre-
diction. Specifically, we run the simulation for multiple times
(usually 5) and calculate the averaged number of successful
checkin/checkout as our prediction result.

V. EVALUATION

Extensive data-driven experiments were conducted in this
section to evaluate the performance of the proposed model.
In the following, we first describe the dataset, baselines and
evaluation metrics. Then, the performance of both checkin and
checkout prediction are shown with comprehensive analysis.

A. Dataset Description

We conduct the evaluation on Hangzhou Bike-Sharing
System dataset from June 2015 to August 2015. Hangzhou
Bike-Sharing System is one of the largest bike-sharing
systems worldwide, and as for our dataset, it consists
of 25,336,206 shift records, 63,968 bikes, and 3,390 sta-
tions. Each record contains the user’s id, checkin/checkout
timestamps, checkin/checkout station ids. Other auxiliary
datasets include the static information of stations (such as
location, capacity), weather data of the same period in hourly
granularity. In this evaluation, the records of the first 60 days
are used as training data while the remaining 32 days are used
as testing data. For predictions, each algorithm is given the
necessary information before specific time ¢ (e.g., 8 a.m.) and
asked to predict the checkin/checkout amount in the following
time window ¢t + A (e.g., from 8:00 a.m. to 8:30 a.m.). The
time window is set to 30 minutes unless explicitly stated.

B. Baseline Approaches

We first introduce prediction techniques that comprise the

baselines of our model.

« Historical Mean (HM) uses the average of historical
observations of the same time and location to forecast the
future data [43]. Specifically, when conducting prediction
for a period, we first find out historical periods with the
same time of day and day of week, and then average the
checkin/checkout results from these periods.

o Auto-Regressive and Moving Average (ARMA) is
widely used for time series prediction and was
adopted for BSS checkin estimation [5]. It leverages
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checkin/checkout information of the most recent p time
windows for future prediction. Parameters are determined
using historical data with the least squares method. Both
HA and ARMA can be viewed as approaches without
considering environmental/external factors.

« Random Forest Model (RF) is a typical machine
learning approach for regression tasks and shown to
be effective in the demand prediction of BSS [41].
In this evaluation, temperature, weather, hour of day, day
of weekday, holiday information, the checkin/checkout
demand of the previous time interval are chosen as
prediction features.

o Probabilistic Flow Model (PFM) is the most recent
work of traffic prediction in bike-sharing system [8]
where the checkin demand is predicted by considering the
transfer probability among different pairs of stations and
the number of real-time checkout users and calculating
the expected number. The difference between PFM and
our approach is that PFM does not consider the available
bikes/docks in each station.

« Potential Demand (PD) is a simplified approach which
predicts the future demand by aggregating the generated
synthetic records in the prediction period.

The simulation-based prediction approach proposed is abbre-
viated as SP.

For performance metrics, we adopt CDFs of both absolute
and relative prediction error. The absolute error is the differ-
ence between ground truth and prediction while the relative
error is absolute error divided by ground truth. Also, we use
Root Mean Squared Error (RMSE) for evaluation. RMSE is
computed as

RMSE = (2)

where y and y are the prediction and the ground truth
respectively while n is the number of predictions.

C. Checkout Prediction

Figure 7 presents the overall prediction performance across
all stations. We divide each day into 48 30-minute intervals.
All algorithms are required to predict the traffic flow for
each 30-minute interval. Figure 7(a) demonstrates the CDF
of absolute error while Figure 7(b) shows the CDF of relative
error.

It is worth noting that in Figure 7(a), the CDF of SP and
PD appear as the step function. This is because both SP and
PD only predict integer number, so the absolute errors are also
integers. Thus, for SP and PD, we should only pay attention
to the CDF values when error = 0,1, .... We can see that
90% of the absolute error is less than 2 in our approach,
outperforming three baselines. Table I also gives evidence of
the advantages of our approach while the RMSE of SP is as
low as 1.91. Similar patterns exist for relative error. We note
that in relative error metric, the performance of SP and RF
are similar. This is because in relative error we only consider
time intervals with more than five checkouts in a 30 minutes
prediction period. Since the checkout demand is generated
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TABLE I
RMSE OF CHECKOUT PREDICTION

ARMA
2.18

HM RF PD SP
207 | 1.96 | 2.53 | 191

based on RF prediction and five checkouts in prediction
interval imply the high activeness level of the station, most
predicted users will be able to checkout one bike, resulting in
the similar performance of SP and RF.

D. Checkin Estimation

In this section, we evaluate the effectiveness of the proposed
approach by demonstrating the results of checkin estimations.

We also evaluate the overall performance of the checkin
estimation of all approaches. The CDFs of absolute error and
relative error are depicted in Figure 8, while RMSE results are
presented in Table II.

As one can see from Figure 8(a), for absolute error,
SP outperforms competitors, demonstrating the advantage of
considering station status. For example, more than 92% of
errors are less than 2 in SP while it is 86% and 84% in PD
and HM. Similar performance improvement can be observed
from Figure 8(b). 92% of the relative error is less than 0.5
in SP. However, different from Figure 7(a), we notice that
the performance of SP and RF are no longer closed. This is
because the checkin prediction mechanisms of SP and RF are
completely different and the result shows the effectiveness of
taking track of available docks in stations (e.g., SP prevents
users from checking in bikes to stations that are already full).
Table II also convinces that SP has the smallest prediction
error and it has a 25% performance gain over RF.

E. Impact of Settings

To better understand the performance of the proposed
simulation-based approach in different settings, we further
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TABLE 11
RMSE OF CHECKIN PREDICTION

ARMA | HM RF PFM PD SP
2.12 2.03 | 1.89 | 2.08 1.75 | 141
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Fig. 9. Impact of prediction horizon for checkout. (a) CDF of absolute error.
(b) CDF of relative error.

conduct two sets of evaluation by varying several critical
parameters in the evaluation.

1) Prediction Horizon: In the above evaluation, we only
test the performance for the prediction horizon of half an
hour. However, our model can predict flow traffic in arbitrary
length of prediction horizon. In this part, we change the
prediction horizon from 30 minutes to 120 minutes with a
step of 30 minutes. The absolute and relative error of checkout
are shown in Figure 9. As we can learn from this figure, the
30-minute prediction has the best performance for absolute
error while it comes to relative error 30-minute prediction is
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[a) - i
8 0.5 90 mln.
= == = 120 min
0.25
ol L L L
0 2 4 6 8 10
Absolute Error of Checkin
(@)
1 T T
08 [ - —3(0) i 8
w 06 = = = 60 min ]
o === 90 min
(@] t ]
04 = = = 120 min
02r 8
0 L L L
0 0.25 0.5 0.75 1

Relative Error of Checkin
(b)

Fig. 10. Impact of prediction horizon for checkin. (a) CDF of absolute error.
(b) CDF of relative error.

slightly worse. The absolute and relative error of checkin are
shown in Figure 10. This time, the 30-minute prediction is
the best choice for both absolute error and relative error. From
both figures, we can see the performance for predicting relative
error is very similar. Since we remove interval with small
checkin/checkout number while calculating the relative error,
we infer that a shorter prediction horizon has better prediction
performance for small values.

This is because the prediction can benefit a lot from
accurate online checkout information in the previous time slot.
However, since the duration of most trips are short (99% of
the riding time of the trip is shorter than 60 minutes.), when
the prediction horizon is longer, the algorithm gets less benefit
from online information and relies much more on the synthetic
records.

However, we also notice an interesting result that in
Figure 9(b), the 30-minute prediction has the worse prediction
accuracy. The reason is that for relative error, we only con-
sider time slots with more than five checkout records. Since
30 minutes are a shorter period, the time slots satisfying above
condition usually concentrate in rush hours, which have larger
volatility.

2) Number of Runs of Simulation: Our prediction approach
is based on Monte Carlo simulation, which means result is
the averaged value of multiple runs of simulation. In this part,
we evaluate the impact of different number of simulation runs.
We test the performance for the number from 1 to 5.

The result for checkout is shown in Figure 11. The per-
formance for different numbers of runs are very close to
each other regarding both absolute error and relative error.
This is because the checkout demand is largely determined
by the Random Forest model and it is identical for all runs
of simulation. For checkin prediction, the performance of five
runs is better than that of one run as shown in Figure 12. The
reason is that the events in the synthetic dataset are generated
at random. Thus, there can exist some rare events when run-
ning just one or two simulations. Instead, by running multiple
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simulations (with different generated data) and averaging the
result, we may avoid some rare events and get a better result.
So we believe more runs of simulation usually grants more
stability. One may also notice that the results of one run of
simulation appear in a step function. This is because when
we only use one dataset, the prediction value of a station is
an integer. Since the ground truth value is also an integer,
the difference is an integer as well.

VI. APPLICATION: BIKE REBALANCE

As mentioned in the introduction, the primary issue in BSS
is the unbalanced usage among stations. For example, stations
near the business area are likely to run out of bikes during
evening rush hours, which stops future users to checkout bikes.
To migrate this issue, the BSS operators usually use trucks
to reposition bikes among stations (e.g., bring bikes from
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Fig. 13. Optimal rebalance number.

residential area to the business area in evening rush hours).
Currently, this kind of rebalancing is usually inefficiently for
the fact that the operation (e.g., how many bikes to pick up
or drop off in a specific station) is determined according to
the operators’ prior knowledge and experience without any
real-time prediction result. Thus, we believe the prediction
approach presented in this paper is promising for improv-
ing the rebalancing efficiency. In the section, we conduct a
preliminary study on how to rebalance bikes according to
simulation-based prediction results and show the impact of
different prediction horizons.

A. Background and Scenario

In BSS, the operator usually uses one or more trucks to
redistribute bikes among different stations to prevent stations
from being full or empty. The performance of rebalancing is
determined by two factors: the demand predictions and the
rebalancing capability. Optimal bike rebalancing with limited
rebalancing capability (such as, truck capacity and rebalancing
cost) is complicated problem and attracts the attention of
researchers [22], [44]. Solving this problem completely is
out of the scope of this paper and the primary purpose
of this section is to show the potential improvement on
rebalancing when taking prediction result into consideration.
Thus we assume the rebalance capability to be large enough
(i.e., the operator can redistribute an arbitrary number of
bikes). So the limitation of the rebalancing capability is
removed and the rebalancing performance is only determined
by the predictions. However, as we will show later, the number
of bikes redistributed in our method is close to that of current
rebalancing operation.

B. Determine Optimal Rebalancing Number

By taking advantage of simulation-based prediction,
we know when and where a checkin/checkout event happens,
which grants us with the possibility to gain a fine-grained
stock curve as shown in Figure 13. This curve is calculated
in the following way: Starting with the initial stock, we add
one to it when there is a checkin event and subtract one from
it when there is a checkout event. It is worth noting that here
we ignore the limitation of station capacity.

The truck may take x bikes from one station at the very
beginning according to the prediction result. Note that x can
be both positive and negative. When x is a positive/negative
number, we pick up/drop off specific bikes in this station.
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Since the goal to prevent the station from being empty/full,
we choose a proper x such that the total time of being higher
than capacity or lower than zero is minimized. For example,
as shown in Figure 13, we pick up some bikes at the beginning,
so that whole curve lies between zero and station capacity.

C. Result and Analysis

The experiment is conducted in the following way. Starting
from 8:00 a.m., we first use our simulation-based approach
to predict bike usage in the following ¢ hours, calculate the
optimal number and change the number of bikes in each station
accordingly.

To evaluate the performance, we conduct simulation with
a special dataset. This dataset contains two kinds of records.
i) Real usage records: the record includes a users checkout
station, checkout time, checkin station and checkin time;
ii) Complementary records: these records are generated for the
stations being empty during certain time windows to account
for the users who do not show up in the historical record due
to unavailability of bikes.

The performance metric includes the number of rejected
users (i.e., users failed to checkin/checkout bikes) and the out-
of-service time (i.e., the station is full/empty). These metrics
are computed by the system simulator. Transition records
(including user checkout station, checkout time, checkin sta-
tion, checkin time) are input into the simulator and it is
responsible for keeping track of the number of bikes in all
stations. For the number of rejected users, if a user fails to
checkout a bike, this user is assumed to choose an alternative
transportation means and marked as a rejected user. For the
out-of-service time, if a station is empty or full for time
period t during the simulation, its out-of-service time is t. The
sum of t over all stations is treated as the out-of-service time
of the system.

To ensure a fair comparison among different prediction hori-
zon, we compute the hourly averaged value of both metrics.
The prediction horizon ¢ is set to 3 hours, 6 hours and 9 hours.
We compared our results with two baselines: 1) Experience-
based rebalancing-The rebalance performed by operators;
2) Null rebalancing—Doing nothing for rebalancing. We con-
duct this evaluation on Hangzhou BSS from August 20 to
August 31, 2015. The result is shown in Figure 14.

Rebalance based on predictions can effectively reduce the
out-of-service time and the number of rejected user. Specifi-
cally, compared with experience-based rebalance, the out-of-
service time is reduced by 86% when the prediction hour is
3 hours. The result is an optimistic estimation because we
do not consider truck capacity, but it shows that prediction-
base rebalance will be a promising approach. When com-
paring different prediction horizon, for out-of-service time,
the performance becomes worse when the prediction is longer.
This is caused by two factors:1) When the prediction hori-
zon becomes longer, the accumulated prediction error also
becomes larger; 2) It is more difficult to choose a proper
rebalancing number for a longer time. Note that the opti-
mization object is the out-of-service time and the reduction
of rejected users is a side effect. As we can learn from
Figure 14(b), the averaged rejected user remains a stable
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Fig. 14. Impact of prediction horizon for rebalance. (a) Out-of-service time.

(b) Rejected user.

number for different prediction horizons. In addition, when
the prediction horizon t is set to 9 hours, we find the number
of bikes picking up/dropping off (on average 18572.7) in our
proposal is close to that of the experience-based rebalancing
(on average 15385.2), which means that it may be feasible to
redistribute these bikes in real world.

VII. DISCUSSION AND FUTURE WORK

We provide several insights into the modeling and prediction
results and provide directions for future work in this part.

A. Insights

We first give some insights from both different scenarios
and modeling approaches.

1) Variation Among Different Scenarios: We conduct stud-
ies in different scenarios to get a better understand of human
mobility in BSS. CDFs of relative error of checkin prediction
are presented in Section 15. The results of checkout prediction
are similar and omitted due to space limitation.

In Figure 15(a), we compare prediction results between
stations in the business area and the tourist area. As we can
see, stations in the business area are more predictable due to
users’ regular mobility patterns (e.g., from home to office).
Differences between rainy days and sunny days are shown
in Figure 15(b). Consistent with our intuition, fewer people
use public bikes on rainy days, which increases randomness
and degrades prediction performance. As can be seen from
Figure 15(c), workdays own better prediction results than
holidays or weekends for similar reasons. Finally, stations with
high utilization exhibit high predictability over stations with
low throughputs in Figure 15(d).

B. Open Research Issues

We summarize some open research issues related to the
emerging bike-sharing systems.
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Fig. 15. Overall checkin prediction performance in various scenarios.
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1) Mobility Model Fusion With Multi-Source Data: Study
of human mobility has drawn significant attention in the
mobile community. One intuitive idea is to improve the exist-
ing models by integrating bike-sharing data. Zhang et al. [45]
have demonstrated the reduced bias of mobility modeling
by exploiting the inherent diversities from multi-source data
(i.e., taxi, bus, subway and smartphone CDR).

2) Bike Rebalancing: Though we investigate how sys-
tem rebalancing can benefit from the prediction results in
Section VI, designing a rebalancing system with rebalancing
capability constraints remains an unsolved problem. An inter-
esting and practical problem is how to achieve balancing
between system performance and operation cost. Apart from
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the operator’s “passive” rebalancing, how to devise an incen-
tive and price mechanism enabling user-based ‘“proactive”
rebalancing is also an interesting subject to pursue

3) Service Optimizations: In addition to bike rebalancing,
future work on service optimization includes station loca-
tion optimization, service hour optimization, pricing strategy
design, bicycle utilization balancing, etc. From a customer
perspective, prompt bike stock information delivery and user-
friendly interaction design are also of great help.

Many mobile techniques are promising to improve BSS
service efficiency. RFID positioning and tracking systems,
such as TrackT [46], may be able to track the bikes in the roads
and provide additional online information of bike flows, which
should be helpful for deploying new stations or designing
dedicate bike lanes. We may also use RFID to monitor bikes
in the stations rather than using docks, which may not only
increase the station capacity but also reduce the infrastructure
cost. In addition, mobile computing can also be used in user
navigation [47] and system maintenance [48].

VIII. CONCLUSION

This paper proposes a data-driven simulation-based predic-
tion approach for the bike-sharing systems. Firstly, based on
historical bike sharing data, we first use statistical methods
to model the spatio-temporal shifts of bikes between stations.
Then, users’ potential demand is estimated by combining the
random forest model and mobility model, which generates
multiple synthetic records for simulation. Finally, by feeding
the artificial records into a dedicated simulator, the model can
predict users’ checkin/checkout demand in a long prediction
horizon. Experiment on real-world dataset shows an 85 per-
centile relative error of 0.6 for checkout and 0.4 for checkin.
We also ingestive to what extend prediction results can benefit
system rebalancing. Evaluation results show that provided
sufficient rebalancing capability, prediction based rebalancing
can reduce the system out-of-service time by 86% compared
with experience based rebalancing. Potential limitations of our
approach is that its accuracy highly depends on the estimation
of transfer probability and trip duration. But in some cases,
these numbers are error prone. This may be caused by data
sparsity, environmental changes or improper approximation
of d; j. The model should be updated periodically to migrate
this problems. Besides, from a practitioners perspective, multi-
ple runs of simulation and online data collection usually bring
computation and communication overhead.
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