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Utilization-Aware Trip Advisor in Bike-sharing
Systems Based on User Behavior Analysis

Peng Cheng, Ji Hu, Zidong Yang, Yuanchao Shu, and Jiming Chen

Abstract—The rapid development of bike-sharing systems has brought people enormous convenience during the past decade. On the
other hand, high transport flexibility gives rise to problems for both users and operators. For users, dynamic distribution of shared bikes
caused by uneven user demand often leads to the check in or check out service unavailable at some stations. For operators,
unbalanced bike usage comes with more bike broken and growing maintenance cost. In this paper, we consider to enhance user
experiences and rebalance bicycle utilization by directing users to different stations with a higher success rate of rental and return. For
the first time, we devise a trip advisor that recommends bike check-in and check-out stations with joint consideration of service quality
and bicycle utilization. To ensure service quality, we firstly predict the user demand of each station to obtain the success rate of rental
and return in the future. Experiments indicate that the precision of our method is as much as 0.826, which has raised by 25.9% as
compared with that of the historical average method. To rebalance bike usage, from historical data, we identify that biased bike usage
is rooted from circumscribed bicycle circulation among few active stations. Therefore, with defined station activeness, we optimize the
bike circulation by leading users to shift bikes between highly active stations and inactive ones. We extensively evaluate the
performance of our design through real-world datasets. Evaluation results show that the percentage of frequently used bikes
decreases by 33.6% on usage number and 28.6% on usage time.

Index Terms—Bike-sharing, trip advisor, rebalance bicycle utilization.
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1 INTRODUCTION

With the development of the economy, pollution and
destruction caused by human activities to the natural en-
vironment were becoming more and more severe in recent
years, and sustainable development has therefore become
a consensus of the international community [1], [2]. In this
circumstance, bike-sharing systems (BSS) are developed as
a replacement for short vehicle journeys due to its low
pollution, low energy consumption and high flexibility. In
addition to the reduction of need for personal vehicle trips,
public bike-sharing systems can not only extend the reach of
transit and walking trips, providing people with a healthy
transportation option, but also trigger greater interest in
cycling, and increase cycling ridership. By the end of 2016,
over 1,100 cities actively operate automated bike-sharing
systems deploying an estimate of 2,000,000 public bicycles
worldwide [3].

With bike-sharing systems, a user can easily rent a bike
with a smart card at a nearby station and return it at another
station. However, the advantages can not cover up the
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increasingly prominent issues. For stations, the user demand
is ever-changing and unbalanced, which often leads to the
check in or check out service unavailable at some stations
and has a negative impact on user experience. For bikes, the
usage frequency of each bike is unevenly distributed, posing
a problem for both riders and system operators.

On the one hand, due to the high flexibility of bike-
sharing system, the system typically ends up with an un-
even distribution of bikes across the different stations (due
to the uncontrolled, uneven demand), often rendering the
check in or check out service unavailable at some stations
where bicycle docks are either fully occupied or empty.
During peak periods, user demand characteristics differ
among stations in certain areas. For example, rental demand
usually gets larger in workday morning near residential
areas, whereas return demand gets larger near commercial
districts. At present, operators perform bike redistribution
based on monitor video and user complaints. However, this
method has exposed the serious lag. It is usually when
service unavailable events occur that operators start to give
some scheduling instructions. When the vehicle arrives,
service unavailable events may have passed for some time,
which makes it difficult to meet the needs of users at rush
hour.

To increase service availability and enhance user experi-
ence, studies have been conducted to improve these bike re-
distribution strategies based on bicycle mobility models and
predictions. The majority of previous work focuses on bike
usage patterns and rental volume forecasts for each station
without considering online information (e.g., [4], [5], [6],
[7]). Less attention has been devoted to demand prediction
of each cluster from the view of bike flow mobility patterns
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which may not fit for recommending stations for users [8].
In conclusion, developing a fine-grained prediction model
involving multiple factors has proven to be elusive, and has
remained a largely unstudied problem. The main technical
challenge is that bike traffic is not only highly dynamic and
intercorrelated in both the temporal and spatial domains,
but also further influenced by complex issues such as timing
and meteorology. To alleviate the unbalanced demand prob-
lem, we establish a fine-grained demand forecasting model
and predict check in and check out demand on a per-station
basis with sub-hour granularity by using random forest
algorithm. In our model, offline features such as time and
weather are selected to capture the periodic patterns of user
demand. Online feature is to reflect the real-time availability
of the station which is helpful for abnormal traffic.

On the other hand, a small part of bikes is used much
more frequently than others. Bikes that are used too much
are vulnerable and hence increase repair bills and lead to po-
tential denied service. The very first bicycle from Hangzhou
BSS is reported to be rented for over 6,000 times and ridden
for more than 20,000 kilometers in 3 years. Similarly, the
most tireless bicycle from 2016 has been rented for 5,616
times, over 15 times on average each day. According to
Hangzhou public bike-sharing company, the average life of
their bicycles is less than 4 years due to longtime high load
operation and lack of timely renewal and maintenance. On
the contrary, the average life of private bicycles is 10 years
and above. Meanwhile, the cost of repair and labor accounts
for a large proportion in the overall operating expenses. In
2012, the repair cost of Hangzhou bike-sharing system was
near 6 million yuan [9]. In Washington, D.C., the annual
maintenance cost was $200 to $300 per bike in the year of
2012 [10].

Intuitively, operators can balance bike usage by leading
users to use those unpopular bikes based on usage counts
of each bike. However, directing users to rent a specific bike
is not practical. Based on our analysis on a real bike-sharing
dataset from Hangzhou, we observe that bikes located in
some stations are much more likely to be used and moved
to another active station. Hence, by introducing the station
property of activeness, we transform the original problem
of picking bikes to recommending check-in and check-out
stations. By using the proposed trip advisor, we aim to guide
users to ride bicycles between stations with different levels
of activeness, therefore avoiding circumscribed circulation
among active stations. For users, an advisor can not only
help them choose stations with adequate bicycles, but also
ensure a higher success rate when returning bikes. Also,
different incentive mechanisms can be leveraged to better
prompt the balancing process.

In this paper, we propose a trip advisor that recommends
the optimal pair of stations to rent and return bikes. Through
guiding the actions of users, it can help balance bike usage,
reduce operation cost and enhance user experience. Firstly,
to make sure users can find bikes and available lockers,
success rates of rental and return should be predicted for
each station. Different from traditional demand prediction
methods, we present probabilistic forecast methods on a
minute timescale instead of predicting the exact stock num-
ber on sub-hour granularity. Secondly, in order to balance
bike usage through station recommendation, a station prop-

TABLE 1
Primary fields in the bike-sharing dataset.

user id rent netid tran date tran time
8601940 9926 20150601 070641

return netid return date return time bike id
9205 20150601 071635 1708133

erty must be associated with bike usage frequency. We
define activeness for each station by exploiting the idea of
PageRank. These two parts constitute the core content of the
trip advisor framework.

In summary, in this paper we propose a novel utilization-
aware trip advisor to lead users to help balancing bike usage
without compromising the quality of service. We highlight
our key contributions as follows:

• We explore the overall characteristics of bike-sharing
systems, analyze the spatial temporal patterns of
user behavior and study the bike usage frequency,
thus laying the foundation for trip advisor design.

• We propose a probabilistic forecast method which
adopts Monte Carlo simulation and random forest
model to improve prediction accuracy.

• We introduce the concept of activeness to link bike
usage frequency to station property which utilizes
the topological characteristics of bike sharing net-
work and the relative check out amount of each
station. Meanwhile, we dynamically update the ac-
tiveness to take the effect of the advisor on the
system into account.

• We present a novel framework to balance bike usage
with the help of users and validate our proposed
method with real-world human mobility datasets.

2 DATA PREPROCESSING

2.1 Dataset Description

The Chinese city of Hangzhou has the world’s largest public
BSS with more than 3300 stations and over 84,000 shared
bicycles [11]. Since deployed in May 2008, thousands of
bicycles have been rented for more than 700 million times.
The concept of public bicycles has since spread to 30 other
provinces in China and around 175 cities nationwide.

The system is classified as a third-generation bike-
sharing program due to its IT-based system, automated
check-in and check-out, and distinguishable bicycles and
docking stations [12]. The dataset used in this paper was
collected in June 2015 from our partner who is running
Hangzhou BSS. It contains 58,647 bikes and 3,329 stations.
Each bike-sharing trip contains an origin and a destination
with information of locations and timestamps. The primary
fields of the dataset are shown in Table 1.

The meteorology dataset contains weather conditions
of Hangzhou with totally 48 × 365 = 17, 520 records.
Meteorological observations were updated every half hour
and the data format of each record is shown in Table 2.

2.2 Data preprocessing

Data cleaning:
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TABLE 2
Fields in the meteorology dataset.

Time (CST) Temp (◦F) Dew Point (◦F)
12:30 PM 100.4 69.8

Pressure (in) Humidity (%) Visibility (mi)
29.65 37 6.2

Wind Dir Wind Speed (mph) Conditions
WSW 8.9 Partly Cloudy

The data in the real world are generally incomplete and
inconsistent dirty data, so data analysis cannot be directly
conducted. Before analyzing the data, it is necessary to
perform appropriate data cleaning to obtain high quality
data and necessary information.

Actual user demand calculation:
In BSS, it often happens that a user returns the bike im-

mediately after borrowing it at the same station, after which
the user often borrows another bike. This phenomenon may
be due to the user’s dissatisfaction with the chair height or
the current status of the bike. Therefore, if we directly count
the number of records, the calculated user demand will be
greater than the actual user demand.

As shown in Figure 1, the PDF curve of trip duration
which begins and ends at the same station can be divided
into a distinct spike and a long tail: for those real users, users
at different stations could have different travel purpose, so
the trip duration must be different. Due to the superimposed
effects of records from all the stations, the travel time will
be evenly distributed. Accordingly, the curve has a longer
tail; and for the users who return the bike immediately,
the trip duration is almost the same in each station, which
leads to that very high spike. In the figure, the horizontal
axis represents the riding time in seconds. The peak caused
by the superimposed effects disappears at 120s. Therefore,
records with trip duration less than 120s are treated as
false records, and thus can be deleted from the original
data. Finally, the actual demand can be calculated by simply
accumulating the data in a half-hour unit.

0 600 1200 1800 2400 3000 3600

Trip duration (s)

0

0.02

0.04

0.06

P
D

F

Fig. 1. PDF of trip duration which begins and ends at the same station.

Station stock calculation:
When the station is full or empty, the calculated user

demand will be less than the actual demand. Therefore, we
need to calculate the station stock to identify the full or
empty situations.

As shown in the Figure 2, we can see that as the time
goes by, the curve gradually deviates from 0, and the lowest
value is even lower than -150. In real life, however, the
station stock is impossible to be negative. The data excursion

is a cumulative error caused by the fault transaction data.
Therefore, we need to correct the excursion by considering
other ancillary data.
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Fig. 2. Stock curve of station 4051 without correction in January 2013.

The ancillary data used here is empty and full alarm
data. The steps are as follows: Firstly, get the initial state,
redistribution data, empty and full alarm data of all the
stations. Then, select the corresponding data as well as the
transaction data for each station to be calculated. Based on
the initial status data, a list of bikes in the station is gener-
ated. Combine the empty and full alarm data, redistribution
data and transaction data into a single operation data table
and sort by its operation time. Finally, process each row in
the data table in sequence, and the list of bikes in the station
could be continuously updated.

As Figure 3 shows, the stock curve of station 4051
after correction changes periodically, which means the data
excursion error is eliminated.
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Fig. 3. Stock curve of station 4051 after correction in January 2013.

2.3 Statistics in BSS

In order to have a more intuitive view of the entire system,
some statistics on public bicycle systems are given in this
section, mainly about site distribution, site capacity, and
so on. Based on these statistics, we can obtain the specific
characteristics of Hangzhou public bike-sharing system.

Station Distribution:
Bike stations in Hangzhou are located within the ur-

ban area spanning over 600 square kilometers; the aver-
age distance to the closest neighboring station being 300
meters [12]. Figure 4 shows the probability distribution
function (PDF) of the number of stations within a certain
range of one station. From this figure, we notice that half
the stations have more than 3 neighbors within the range
of 300 meters, and typically a station may have 8 neighbors
within the range of 500 meters.

Station capacity:
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Fig. 4. Station distribution.

Station capacity is measured as the number of stocks.
As shown in Figure 5, there are two types of stations in
Hangzhou: normal stations with 21 docks and large station
with around 33 docks. The station capacity is designed by
the urban planning department whereas the actual number
of docks depends on the actual situation.

Fig. 5. Distribution of station capacity.

This provides a reference to the range settings when
designing the trip advisor. If we only consider stations
within a very small range, there will be few stations to
be selected. Otherwise, the number of candidate stations
will increase significantly but users will suffer from extra
walking distance. Here, we set the range threshold to 500
meters which provides 8 stations in expectation.

3 USER BEHAVIOR ANALYSIS

In this section, we first present some statistics and spatial
temporal user behavior analysis derived from the bike-
sharing dataset from Hangzhou City in China. Inspired by
insights obtained from the study we propose our utilization-
aware trip advisor.

3.1 Overall characteristics

Figure 6 presents the distribution of monthly usage amount
(i.e., check in numbers) across all 2806 stations. We find
that there are more than 100 busy stations with extremely
high usage amount up to 30000 (check in/month). However,
the median value of the usage amount is around 2000. The
skewed distribution in Figure 6 indicates a high diversity of
usage amount across different stations. We observe a similar
pattern for check out numbers.

Figure 7 presents CDF of empty and full hours in a
month. Axis x represents full or empty hours. The calcu-
lation steps are as follows. Every half an hour, the inventory
in each station is sampled once. There are 1440 samples
in a month. When the inventory is less than 10% in these
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Fig. 6. Distribution of monthly usage amount.

TABLE 3
Statistics on trip durations

< 15 min 15-30 min 30-45 min
53% 27% 11%

40-60 min > 60 min mean
5% 4% 23.31 min

samples, we consider it the empty time. Similarly, if the
inventory is more than 90%, we consider it the full time.
This picture can be used to measure the service level of the
current bike-sharing system. It can be seen that about 19% of
stations have an empty status for more than 200 hours in a
month, 27% of the stations have been full for more than 200
hours in a month. The empty condition appears relatively
less and the full condition appears relatively more.
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Fig. 7. CDF of empty and full hours

3.2 Temporal patterns

The trip duration of bike-sharing is important for analyzing
the user’s travel behavior. The cycling duration reflects the
intention of traveling to a certain extent. Based on statistics
on the data of the cycling trip length of the bicycle, the
average single cycle length of the public bicycle is about
23.31 min. Table 3 shows the statistics on trip durations in
2013. In this table we found that trip durations are typically
less than one hour. That’s probably because of the first-hour-
free policy of Hangzhou BSS.

The time distribution of the activity of rent and return is
also an important part of data analysis. The time distribu-
tion of the activity of rent and return can be roughly used to
understand the peak periods of borrowing public bicycles,
facilitating the coordination and scheduling of bike-sharing.
We select two typical days to analyze the activity of rent
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and return in different days respectively, which is January 1,
2013 (typical holiday) and January 8, 2013 (typical working
day). The results are shown in Figure 8, plotted by time on
the horizontal axis and the activity of rent and return on the
vertical. The activity is calculated as the hourly usage for all
sites divided by the total usage for the day.

We can find that there is an obvious characteristic of
the time distribution of rent and return activity on working
days, specifically the two peak periods in the morning and
the evening, showing an M-shaped distribution. The peak
hours of orders are concentrated around 8:00 am to 9:00 am
and from 17:00 pm to 18:00 pm, and the usage during the
morning and evening peak accounts for about 41% of the
total daily usage. The two major peaks are mainly caused
by the sudden surge of traffic in and out in rush hours.
The activeness of rent and return during work hours is
significantly reduced. Comparing morning rush hour with
evening rush hour, rent time at evening rush hour is more
dispersed, starting to rise significantly at 16:00, while the
rent time at morning rush hour is more concentrated, which
may be due to the user’s similar attendance time and
different duty-off time.
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(a) Activeness distribution of rent and return in workday.
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(b) Activeness distribution of rent and return in holiday.

Fig. 8. Activeness distribution of rent and return.

3.3 Spacial patterns

Figure 9 shows the spatial distribution of average usage
amount in Hangzhou public bike-sharing system. Each dot
represents a bicycle site. We rank the stations according to
the average number of rent and return bikes at each station.
The radius of the dots from large to small represent the
rent and return amount from high to low. The distribution
of the stations is plotted on the map. It can be observed
that stations with relatively large usage amount are usually
located in Xihu District, Gongshu District, Shangcheng Dis-
trict and Xiacheng District, while the bike usage in Xiasha
District, Binjiang District and Yuhang District are much less
active. The overall trend of decreasing from the center to the

TABLE 4
Top 10 rent and return stations

Top 10 rent stations 2015 1053 4051 7339 2040
2105 1256 1077 2042 7358

Top 10 return stations 1053 4051 2015 2040 2105
7339 1256 1077 2042 4049

periphery shows that there is an obvious imbalance in the
spatial distribution of the user demand. This phenomenon
is consistent with the station density in various regions and
the level of regional economic development.

Fig. 9. Spatial distribution of bike usage amount.

In order to analyze the transaction relationship between
the stations, we extract the out-degrees and in-degrees be-
tween the stations and draw the pixel maps of the station
transaction behaviors on the x and y-axes. The result is
shown in the figure. In Figure 10, each pixel in the pixmap
represents a set of station pairs, the color of the dots depends
on the number of transactions. The darker the color, the
greater the average monthly trading volume.

Fig. 10. Frequent pairs

We have the following observations:
Firstly, most of the regions in the figure are very light

in color, indicating that the adjacency matrix formed by the
transaction behavior is a sparse matrix. Most of the sites
have a borrowing correlation with only a few sites in the
entire network. Most nodes in this directed graph don’t have
many neighbors.

Secondly, the color is the deepest near the diagonal. Since
the stations are sorted based on net id, it means that bikes
usually tend to be rented and returned among stations with
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similar net id. Meanwhile, the net ids are closely related to
the geographic location of the stations, so the stations that
are located in a certain district are likely to have similar net
ids. Therefore, we can conclude that the spatial movement
of bikes is often not too far away, and that a large number
of cycling records occur in the vicinity of the starting site,
which is also consistent with the conclusion on riding time
mentioned above.

Finally, the figure is basically diagonal symmetrical.
Since the transactions we calculated are directional, that is,
the records from Site A to Site B and the records from Site B
to Site A are counted separately. There is no obvious trade
bias between the two sites. It is not common for the system
to have a large number of bikes from one site to another site
while the other site does not have the returned traffic, which
is beneficial for system scheduling.

After we are sure that there are enough stations to be
selected near the origin and destination, we need to find out
whether the stock levels of those stations are quite different
from their neighbors. If the stock levels are almost the same,
there is no need to predict the stock level of each station.
The success rate of rental and return would be exactly the
same for all the candidate stations.

Figure 11 shows the cumulative distribution function
(CDF) of the number of unbalanced stations around each
station in June 2015. For each station, if the difference in
stock level between it and a station located within 500
meters exceeds 50%, it is considered as an unbalanced event.
If the accumulated time of unbalanced events is longer
than h hours in a month, the unbalanced station number
increases by 1. Here, let h be 120, 180 and 240. From Fig-
ure 11, we notice that when h is set to 180, there are more
than 61% of stations have at least 1 station nearby that is
distinct from them in stock level. When h gets smaller, the
percentage of stations that have at least 1 unbalanced station
nearby is obviously increased. When h equals to 240, the
corresponding percentage is 42%. According to the above
analysis results, the stock level of stations within a small
range could be quite different from each other, which means
that it’s necessary to predict the stock level and ensure that
users can rent or return bikes successfully.
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Fig. 11. Station unbalance.

3.4 Bike Usage

After the analysis of spatial and temporal patterns, the most
essential issue is bike usage unbalance. Because historical
records contain the ID of bikes, we can extract the usage
characteristics by summing up the number of occurrences
and trip durations of each bike. The preliminary results are

depicted in Figure 12. As shown in Figure 12a, 57% of bikes
are used for less than 150 times in a month, less than 5 times
per day on average. However, about 10% of bikes are used
more than 310 times in a month, which is twice as frequent
as less used bikes. From Figure 12b, we can see that the
usage time of 64.5% bikes is less than 57 hours in a month
while that of 10% bikes is over 115 hours. These statistics
clearly indicate that the usage of bikes is unbalanced, and a
small part of bikes have much higher usage frequency and
longer usage time than others, which is the leading cause of
bike damage [13].
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(a) CDF of usage number.
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(b) CDF of usage time.

Fig. 12. Usage unbalance.

Further, we describe the usage characteristic by using
the idea of the Lorenz curve. The Lorenz curve plots the
percentage of total income earned by various portions of
the population when the population is ordered by the size of
their incomes [14]. In Figure 13, the vertical axis represents
the cumulative percentage of bikes (in ascending order
of usage number/time), while the horizontal axis shows
cumulative percentage of bike usage number/time. We find
that 60% less used bikes only contribute about 30% usage
time and 33% usage number. Thus, it can be concluded that
bike usage unbalanced problem does exist, and we need to
design a trip advisor to guide users to help balancing bike
usage.
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Fig. 13. Cumulative contribution rate of usage.

3.5 Insight
In this part, we offer some insights into explaining the
observed bike usage unbalance problem. A direct and ef-
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TABLE 5
Most frequently used bikes.

bike id 687500 683676 687119
usage num 809 783 780

bike id 1502964 688515 1500966
usage num 630 616 608

bike id 687500 687119 683676
usage time (h) 333.67 319.16 314.56

bike id 1501877 1502628 1502407
usage time (h) 259.63 258.10 257.88

fective way to explore the reasons is to identify those most
frequently used bikes and observe their mobility patterns.
From the historical check in and check out records, we have
calculated the usage number and usage time of bikes and
the results are shown in Table 5. We found that the top 3
bikes on usage number are consistent with those on usage
time. The most frequently used bike with bike id 687,500 has
been rented 809 times in a month with a total time of 333.67
hours.

Fig. 14. Geographical distribution of stations that that top 3 frequently
used bikes have been visited.

It’s possible that the usage frequency of each bike has
a close relationship with the stations it has been visited.
Thus, the stations where top 3 frequently used bikes have
been checked out are found and the amounts of visits are
counted. The geographical distribution of those stations is
depicted in Figure 14. From this figure, we notice that the
number of visits in main urban area is much higher. The
purpose of rental in the main urban areas could be going
to work or school or even buying breakfast. The significant
features of this kind of rental are short trip, high efficiency
and quick turnover. In this case, bikes are usually rented
from one station and then quickly returned to another sta-
tion. After being returned, bikes are likely to be checked out
again and flow to the next station quickly. Such preliminary
results demonstrate that the main reason for unbalanced
bike usage is the continuous circulation of bikes among
active stations. On the other side, bike utilization can be
balanced by introducing flows between active stations and
inactive stations. How to define the activeness of stations
will be elaborated in the section below.

4 METHODOLOGY OVERVIEW

In this section, we first formulate the problem of station
recommendation, and then show the details of the proposed

Fig. 15. Framework of the trip advisor.

trip advisor framework.

4.1 Problem Definition
Considering a bike-sharing system consisting of stations,
bikes and users, the inputs of trip advisor are user requests
including origin location lo, destination location ld and
leaving time tl. The user requests are stochastic and can
occur at every station at any time. Let So = so1, so2, ..., son
be a set of stations in R meters zone around the origin
and Sd = sd1, sd2, ..., sdn be a set of stations near the
destination. Each station has its location (e.g., latitude and
longitude) and stock level ri with sub-hour granularity,
where i ∈ So, Sd. Based on user inputs and current status
of the system, the output of trip advisor is a pair of optimal
stations (s∗i , s

∗
j ) for users to rent and then return a bike,

where s∗i ∈ So and s∗j ∈ Sd. The problem is dynamic
because decisions can be adapted over the planning horizon.
In decision making process, the first step is to filter the
stations in So and Sd based on the success rate of rental and
return. Hence, we will obtain a middle variable S

′

o and S
′

d

representing candidate stations after probabilistic forecasts.
The important notations used in this paper are listed in
Table 6.

TABLE 6
Symbols and definitions.

lo, ld location of origin/destination
tl leaving time
So, Sd stations near the origin/destination
R range
ri stock level of station i ∈ So, Sd

S
′
o, S

′
d candidate stations after probabilistic forecasts

4.2 General Framework
Before leaving, users can send a query including their origin,
destination and leaving time to the trip advisor and then
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Fig. 16. The idea of probabilistic forecasts.

get the recommended stations for rental and return. The
key problem is how to guide the users to balance bike
usage through station recommendation while not affecting
the user experience. In this section, we will introduce the
framework of our method, as shown in Figure 15. The
framework is comprised of two major components: prob-
abilistic forecasts and activeness calculation.

4.2.1 Probabilistic Forecasts
In order to encourage users to use the advisor and continue
to help balancing bike usage, we first need to make sure that
users can rent or return bikes successfully. Therefore, the
first component, probabilistic forecasts, is designed to solve
the no-service problem and guarantee the higher success
rate for rental and return when users arrive at the stations.
No-service means the situations in which a user can’t find
available bikes to rent, and those in which he/she finds
there’s no parking spot to return. This problem is mainly
caused by the asymmetric and fluctuating user demand
among the stations. For users, they may know where the
nearest station is, but what they really want to know is
the probability of successfully renting or returning bikes
when he/she arrives there. To obtain the success rate at
a precise moment, simply predicting the forthcoming user
demand on half-hour granularity is not enough to meet the
above requirement. The component of probabilistic forecasts
is needed to predict the stock level on a minute timescale
and further derive success rate through the Monte Carlo
method.

The process is illustrated in Figure 16. At the begin-
ning, the stock levels of candidate stations near the ori-
gin/destination are known. The forecasts consist of two
parts. The first part is coarse-grained prediction using ran-
dom forest model; the second part is fine-grained prediction
based on Monte Carlo method.

Here, we take predicting return success rate at arriving
time as an example to elaborate on the details. Let [t]
represent the rounded time of t to the nearest 30 minutes
before. At the rounded current time [tnow], we already
know the stock status ri of station i within R meters of the
destination. Firstly, we predict the base check in and check
out demand at each station with sub-hour granularity by
using random forest model. Random forests are an ensemble
learning method for regression which operate by construct-
ing a multitude of decision trees with different samples
and different initial variables. The final output is the mean
prediction of the individual trees. We apply the random

forest theory to model and predict the users behaviors with
a joint consideration of time factors, meteorology and real-
time bike availability [15]. Let CIi(t) and COi(t) be the
predicted check in and check out number of station i within
a temporal window (t, t+T ), where i ∈ Sd and T = 30min.
The coarse-grained prediction of stock level at the rounded
arriving time [ta] is as follows:

Stocki([ta]) = ri +

[ta]−T∑
t=[tnow]

(CIi(t)− COi(t)) (1)

Then, to get a more accurate stock number, we adopt
the Monte Carlo method to simulate the bike rental and
return process at the temporal window ([ta], ta). The gen-
eral method of Monte Carlo is to obtain numerical results
through repeated random sampling. We assume that the
number of bikes rented or returned in the predicted time
window follows a Poisson distribution. Given the station
i with the predicted bike check in and check out number
CIi([ta]) and COi([ta]) in the time window ([ta], [ta] + T ),
we divide time delta into T small consecutive time intervals
δt = 1min. The number of bikes returned to this station
in each δt, noted as x, follows a Poisson distribution with
mean parameter λ = CIi([ta])/T :

P (x = k) =
e−λλk

k!
, k = 0, 1, 2, ... (2)

For each simulation, we generate a stochastic sequence
Q+i from the return distribution to simulate the bike return
events of each station. Similarly, we generate a stochastic
sequence Q−i for the bike rental events. Afterward, we
randomly arrange the return and rental events based on the
two sequences and update the stock number over time. If
the stock number exceeds the capacity of the station, we
mark it as an over-demand station and stop the process.

We repeat the simulation for M times to count the
over-demand occurrences U . In the end, we estimate the
probability of successfully returning bikes at arriving time
as the rate:

p = 1− U

M
. (3)

The success rate for bike rental at leaving time can be
calculated in a similar manner.

In summary, the main idea of probabilistic forecasts is
to simulate the probabilistic process of check in and check
out and derive the probability of success-of-service across
a sufficiently large number of simulations. We choose the
stations as candidate stations S

′

o, S
′

d on the basis of whether
its success rate is larger than a threshold P , which is set as
0.8 in our work.

4.2.2 Activeness Calculation
For the candidate stations S

′

o, S
′

d, we need to further de-
cide which is the best pair of stations to recommend. Our
ultimate goal is to balance bike usage and extend their
lifespan, but we can only lead users to a station instead
of recommending a specific bike. Therefore, we have to
concern about how to link up the bike usage characteristic
with a certain property of the station, such as activeness.
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According to the previous analysis, active stations are
characterized by the following properties: (1) Bikes returned
to this station are easily checked out and flow to many
other stations; (2) The stations that those bikes flowed to
are also very active. These properties remind us of the
way to measure a web page’s importance. PageRank is an
algorithm used by Google Search to rank websites in their
search engine results [16]. According to Google: PageRank
works by evaluating the quality and quantity of links to
a web page to determine a relative score of that page’s
importance. The idea that PageRank brought up is that more
important websites are likely to receive more links from
other websites.

In bike-sharing systems, activeness can be defined to
measure the active level of bike usage for each station based
on the idea of PageRank. We begin by picturing the station
network as a directed graph, with nodes represented by
stations and edges represented by the bike flow (rent to
return) between them. The underlying assumption is that
more active stations in the network are likely to send more
links to other stations. This makes sense because according
to the analysis in Section 3, bikes do tend to be checked out
extensively to many other stations at active stations and the
bike usage in stations with more links out are usually more
frequent. But this is only a start: the bikes must continue
to flow to active stations so they can enter a high-speed
circulation and be repeatedly used. This leads to the next
assumption that stations which are themselves active weigh
more heavily and help to make the stations that link to them
active. If bikes rent from one station to stations with lower
activeness, the bikes are likely to stay there and it will take
a long time for them to be checked out again. Therefore,
this station may have low activeness as well. Finally, the
activeness of station i is given as

A(i) =
1− α
N

+ α
∑

j∈out(i)

n(i, j)A(j)

nin(j)
(4)

where A(i) is the activeness of station i, α is a damping
factor which can be set between 0 and 1, N is the number of
stations, n(i, j) is the number of bikes rent from i and return
to j, nin(j) is total number of bikes return to j and out(i) is
the set of stations that have bikes rent from i.

We can see that the activeness of station i is recursively
defined by the activeness of those stations which are linked
to by station i. If station i links to a lot of stations, the com-
mon belief is that station i is active. The activeness of station
j which station i links to does not influence the activeness of
station i uniformly. Within this algorithm, the activeness of
a station j is always weighted by n(i, j)/nin(j). This means
that the more return bikes station j has, the less will station
i benefit from the link to station j. In addition, if a node
has no ingoing edges, it cannot transfer its activeness to
any other stations. Therefore, a damping factor is added for
giving each node a probability that a bike can be returned
to this station from any other station, each station has 1/N
probability of being the source.

In the above formula, flow patterns in the station net-
work is the main consideration, but the rental scale of each
station has to be concerned as well. Stations with a large
amount of rentals will certainly affect the mobility of more

bikes. Bikes in those stations are usually easier to spread
to more stations which is an expression of high activeness.
So we adopt the normalized relative check out number
to indicate the rental scale and suppose that stations with
large rental scale are more active. Therefore, we rewrite the
activeness of station i as following:

A(i) = (1− α)ri + α
∑

j∈out(i)

nin(i, j)A(j)

n(j)

ri =
nout(i)/c(i)∑N
j=1 nout(j)/c(j)

(5)

where c(i) is the capacity of station i and nout(i) is the
absolute check out number of station i. In this way, bikes
are more likely to come from stations with higher relative
check out number. By introducing this prior distribution,
this method provides a more comprehensive measure of the
activeness of stations.

Finally, to obtain the optimal pair of stations (s∗i , s
∗
j ), we

select stations according to the following equation:

(s∗i , s
∗
j ) = argmax |A(si)−A(sj)| (6)

where si ∈ S
′

o, sj ∈ S
′

d. If users strictly follow the advisor,
the activeness of stations could have a distinct change
due to the altered user behaviors. Taking into account this
counteraction of the advisor to the network, we update
the activeness each hour using the check in and check out
records within the last hour.

5 EVALUATION

In this section, we empirically evaluate the performance
of our proposed method. We conduct experiments on the
dataset of Hangzhou bike-sharing system in June 2015.
There are 10,190,841 records, which contains 58,647 bikes
and 3,329 stations. The data format is presented in Table 1.
As mentioned in Section 2, the records that check out and
check in at the same station with a trip duration less than 2
minutes are considered as noise data and removed from the
original records.

5.1 Probabilistic Forecasts

In our experiments, we use the results of probabilistic fore-
casts as a condition for filtering stations, so we evaluate the
probabilistic forecasts step as a classification problem and
the metrics are as follows:

Precision and Recall: Given the results of whether sta-
tions will be over-demand, precision and recall are defined
as:

Precision =
|Npre−od| ∩ |Nreal−od|

|Npre−od|
(7)

Recall =
|Npre−od| ∩ |Nreal−od|

|Nreal−od|
(8)

where Npre−od represents the number of events that are
predicted to be over-demand, and Npre−od represents the
number of events that are really over-demand.
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Fig. 17. Precision, recall and F-measure for probabilistic forecasts.

F-measure: F-measure is a weighted average of the pre-
cision and recall. We use Fβ which weighs precision higher
than recall by setting β = 0.5:

Fβ = (1 + β)2
Precision ·Recall

β2Precision+Recall
(9)

We compare our proposed probabilistic forecasts method
with the following three algorithms:

• Historical average (HA) predicts the usage demand
by averaging the historical values for the same day
and time [17]. For instance, the check-out number
of Monday 08:00 a.m. equals to the average of check
out numbers of Monday 08:00 a.m. in the history and
check out number of 08:00 a.m. last day.

• Auto-Regressive and Moving Average (ARMA) be-
longs to time series analysis methods and has been
applied in demand prediction in [6]. It captures the
temporal patterns of rental and return by leveraging
check in/out information of the most recent p time
windows.

• Random forest (RF) is the basic model where fine-
grained prediction is not considered. Therefore, this
method directly gives the prediction of stock number
instead of probabilistic results for each station.

• Random forest and Monte Carlo method (RF MT)
is the proposed probabilistic forecasts method in this
paper.

For the experiment setup, we divide the historical
records into two parts: the first 20 days for training and
last 10 days for testing. We extract over-demand events by
comparing the predicted stock with the threshold η multi-
plying the capacity. η equals to 0.2 for check out prediction
and 0.8 for check in prediction.

The results are shown in Figure 17. As one can see
from Figure 17, the precision of RF MT method is as much
as 0.826, which is 25.9% more than the HA method. ARMA
and RF methods have relative higher precision but the recall
of ARMA is only 0.55, which is the lowest among the three
methods. On the other hand, we observe that the recall
of HA is significantly larger than other methods. This is
because HA method tends to predict more over-demand
events, which makes most of the real over-demand events
can be predicted successfully. Due to this characteristic,
HA method is low in precision. Among all the approaches,
RF MT method demonstrates the best performance both in
terms of precision and F-score.
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(a) Activeness changes within 10 hours.
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(b) Activeness changes within 10 days.

Fig. 18. Activeness changes with the time.

5.2 Activeness Changes
In the simulation, we notice that the activeness of stations
has different characteristics under different time granu-
larities. The results are shown in Figure 18. Figure 18a
reflects the activeness changes of Top 10 active and in-
active stations within 10 hours. Different colors represent
different hours/days. Since check out number in one hour
is uncertain and random, the activeness of active stations
fluctuates wildly. Meanwhile, the difference between active
and inactive station looks rather small due to the short
time interval. Figure 18b reflects the activeness changes
of Top 10 active and inactive stations within 10 days. It
shows relatively smooth changes of activeness for active
stations and there are deep gaps between active and inactive
ones. In the simulation, we update the activeness of stations
for each hour because the activeness changes can be more
obvious among hours especially when only small part of
users follow the advisor.

5.3 Bike Usage Distribution
In this section, we evaluate the effectiveness of the proposed
trip advisor by demonstrating the results of bike usage
distribution.

5.3.1 Case Studies
We first present a case study of bike 1400,865, which is the
most tireless bicycle on June 22. This bike has been rented
for 38 times in the original records, while the number of
records in the simulation is 13 times. As shown in Figure 19,
the blue circle represents bike usage in the simulation, the
orange rhombus represents that in the original records.
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Fig. 19. Activeness of stations that bike 1400845 passed.

From the figure, we can see that bike usage frequency
has been significantly reduced, especially in the later stage.
After arriving at some relatively inactive stations, the bike
will stay there for a while instead of quickly flowing to the
next active station. On average, the visited stations are less
active than those in the original records.

5.3.2 Overall Performance
To study the overall performance on bike usage distribution,
we adopt PDFs of both usage number and usage time
of bikes as performance metrics. In addition, we also use
average (AVG) and standard deviation (STD) of usage num-
ber and usage time for evaluation. As shown in Figure 20
and Table 7, we compare situations when different propor-
tions of the users, with 100, 75, 50, 25 and 0 percent, respec-
tively, follow the advisor. We have two observations. Firstly,
we can see from Figure 20a that compared with 0%, the
percentage of less used bikes whose usage number belongs
to [0,5] increases by 14.8% and the percentage of frequently
used bikes whose usage number belongs to [15,40] decreases
by 33.6% when the user proportion is 100%. We find out that
the average usage number per day for each bike decreases
from 7.656 to 6.901 when 50% of the users listen to the
advisor. When the percentage rises to 100%, the average
usage number is 6.625 which is down by 13.5%. The reason
is that the advisor tends to use bikes that are rarely or never
used more frequently. Since the total user demand stays the
same with the original records, the more bikes are used,
the smaller the average usage number will be. Secondly,
the average usage time per day becomes more balanced as
shown in Figure 20b, especially for the bikes with usage time
larger than 6 hours per day. The percentage of frequently
used bikes whose usage number belongs to [6,15] decreases
by 28.6% when the user proportion is 100%. These results
prove that the proposed method can help to balance both
bike usage number and usage time. In addition, with the
proportion of users grows, the effect of usage balancing gets
better.

5.4 Impact of Range Settings

Experimental results for the advisor derived in this pa-
per show high performance, demonstrating the potential
of the approach. To better understand the performance of
the proposed method, we further conduct an evaluation
by varying the range parameter in the model. The range
R is the distance allowed between stations and the ori-
gin/destination, which is set from 500m to 1000m and 200m.

(a) Usage number distribution.

(b) Usage time distribution.

Fig. 20. Usage distribution under different proportions of the users.

TABLE 7
AVG and STD usage under different proportions of the users.

User
proportion

AVG of
usage

number

STD of
usage

number

AVG of
usage
time

STD of
usage
time

100% 6.56 5.60 2.11 1.99
75% 6.64 5.14 2.15 1.93
50% 6.83 5.45 2.22 2.04
25% 7.17 5.70 2.36 2.21
0% 7.57 6.16 2.50 2.39

Here, we assume that all the users follow the advisor. The
bike usage distribution under different range settings are
shown in Figure 21. When the range is set to 200m, usage
number between 5 and 15 per day take the large proportion
compared with other settings which have benefit effect on
usage balancing. However, there are only few stations to
be chosen when R = 200m and the simulator failed to
offer a suggestion for more than 15,000 times per day.
When the range is set to be 1000m, the experiment results
have been improved, but too large range settings will cause
added walking distance of users and seriously impact user
experience.

6 DISCUSSION

In this part, we provide some insights into the proposed
framework, and provide directions for future work.

6.1 Reward Design

Although the advisor can improve the success rate of rental
and return to a certain extent, it may also bring additional
distance cost to users when realizing the goal of balancing
bike usage. For the sake of keeping users’ enthusiasm, recent
works have investigated reward mechanisms to guide the
use of shared bikes. An incentive scheme is proposed in [18]
that dynamically sets incentives based on model predictive
control to change the endpoint of customers’ journey to
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(a) Usage number distribution.

(b) Usage time distribution.

Fig. 21. Usage distribution under different range settings.

alternative nearby stations. [19] encourages users to return
bikes to the less loaded station between two neighboring
ones to improve the empty-station condition with price in-
centives. [20] designed a dynamic pricing mechanism based
on an efficient and provably near-optimal on-line learning
framework under given budget constraints.

As for our work, we can extend the last research to
take additional cycling distance cost and individual user
behavior into account, which is illustrated in Algorithm 1.
In each time interval of a day, the budget Bk is calculated
based on the forecasted number of trips Nk. When given a
list of available prices that the mechanism offers to define
the value of users’ additional walking time, the incentive
level pmn can be selected based on the current budget Bn

and the optimistic estimate F̃nu,m on the “current cost curve”
Fnu,m, which denotes the cumulated user-level acceptance
rate when given pm and can be computed iteratively with
the accept times Nn

u,m. The reward rn can then be calculated
with the incentive level and the additional cycling cost
that users have to pay, where si ∈ O, sj ∈ D . Then,
the mechanism transforms the reward of the users into a
discount of their public transit cards. Detailed design and
evaluation of such reward mechanism are beyond the scope
of the paper, and there are many references on this subject.
Through this way, users are motivated to help balancing
bike usage and its beneficial to build intelligent and self-
sustainable transportation systems.

6.2 Other Objective Functions
In practical applications, the advisor enables system op-
erators to design other objective functions, thus achieving
flexible resource scheduling. For example, we could advise
users to rent bikes from active stations and still return them
to active stations. Therefore, the aging process of a small part
of bikes will be accelerated, allowing the regular upgrades
of bikes in the system. Otherwise, it’s unacceptable to the
normal operation of the systems that a large number of bikes
need replacing at the same time.

Algorithm 1 Incentive Mechanism
Input: start time t0, user u, daily budget B, number of trips

in each time interval {N0, ..., Nk, ..., Nh}, number of
total trips N , available prices offered {p0, ..., pm, ..., pq};

Output: Price rn at iteration n;
1: Initialization:

• First time interval. n = 0; h0 = h(t0);
• Budgets. Bk = Nk·B

N , ∀k ∈ [0, h]; B = Bkn ,
Bn = B;

• Value estimates. Nn
u,m = 0, Fnu,m = 0, ∀m ∈

[0, q];

2: for each request at time t do
3: if kn 6= k(t) then
4: kn = k(t);
5: Bn = Bn +Bkn , B = Bn;
6: end if
7: F̃nu,m=Fnu,m +

√
2·ln(n)
Nn

u,m
;

8: mn = arg max
m∈[0,q]

{
min

(
F̃nu,m,

B
N ·pm

)}
s.t. pm ≤ Bn;

9: return rn = pmn · [dist(lo, s∗i ) + dist(s∗j , ld) −
min(dist(lo, si) + dist(sj , ld))] + f · [dist(s∗i , s∗j ) −
min(dist(si, sj))];

10: end for
11: Feedback: Observe acceptance decision yn;
12: Update Variables:

• Bn+1 = Bn−rn ·yn; Fn+1
u,mn = Fnu,mn +

yn−Fn
u,mn

Nn
u,mn+1 ;

• Nn+1
u,mn = Nn

u,mn + 1; kn+1 = kn; n = n+ 1;

6.3 Application in Car-sharing Systems

Similar to bike-sharing systems, rebalancing car utilization
is a significant issue in car-sharing systems. The proposed
framework can also help by directing users but there are
still some differences between these two systems. On the one
hand, there are only about one hundred car rental stations
in Hangzhou by the year of 2018 which is far less than
bike stations [21]. On the other hand, users of car-sharing
systems are willing to pay more compared to users of bike-
sharing systems, so it’s easier to use the price mechanism
to guide the use of cars. Therefore, we need to further
improve the proposed framework for application in car-
sharing systems in the future.

7 RELATED WORK

Due to the increasing importance and rapid development
of bike-sharing systems, a great deal of attention has been
focused on a variety of problems that relate to bike-sharing.
There are various interesting research questions concerning
the establishment, operation and strategic problems of bike-
sharing systems [12], [22], [23], [24], [25]. For example,
Shaheen et al. [12], [22], [23] studied the history, business
models and the social and environmental benefits of bike-
sharing in Europe, the Americas and Asia. Parkes et al. [24]
explored systems’ location, evolution, and their adoption. In
addition, a novel use case of the heterogeneous urban open
data, namely bike-sharing station placement, was proposed
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in [25] while similar problem like electric vehicle charging
station placement has been studied in [26].

Another important research direction concerns user de-
mand prediction. Several papers firstly analyzed user be-
havior patterns and then proposed predictive models to
forecast bike usage demand or stock level of stations in the
future period [4], [5], [6], [7], [8]. The prediction methods are
summarized into two categories: station-centric model and
cluster-centric model. The station-centric model predicts de-
mand for each station individually. For instance, Froehlich et
al. [4] used four basic prediction models to predict available
bikes in each station: last value, historical mean, histori-
cal trend and Bayesian network. Kaltenbrunner et al. [5],
Borgnat et al. [7] and Vogel et al. [6] distinguished typical
usage patterns and predicted the hourly user demand in
the bike-sharing systems of Barcelona, Lyon and Veinna,
respectively, by using time series analysis method. However,
these methods show their limitation on prediction perfor-
mance, especially when predicting the traffic under unusual
situations. For cluster-centric model, it usually partitions the
stations into clusters and predicts the total demand of each
cluster [8], [27]. For example, Yexin Li et al. [8] proposed
a hierarchical prediction model, which contains a bipar-
tite clustering algorithm, a multi-similarity-based inference
model, and a check-in inference algorithm, to predict the
number of bikes that will be rent from/returned to each
cluster, but the geographical granularity of this method is
too sparse for trip advisor design.

Based on insights into usage demand analysis, the
allocation of resources, bikes and empty places, has to
be managed by the operator. To balance the stock level,
methodologies in [28], [29], [30], [31] tackled the problem
of finding truck routes and decided the number of bikes to
move between stations that minimizes the distance traveled
by trucks. Raviv et al. [28] presented two mixed integer
linear program formulations to solve the static repositioning
problem which assumes that the repositioning is during
the night when the usage rate of the system is negligible.
Authors in [29] introduced a dynamic public bike-sharing
balancing problem when the status of the system is rapidly
changing. Redistribution can also be done by users through
a crowdsourcing mechanism that incentivizes the users in
the bike repositioning process [19], [20]. In addition to bike-
sharing data, researchers studied about balancing power
demand through EV mobility in [32]. Similar method has
also been applied into vehicle sharing systems in [33]. Both
dynamic vehicle redistribution and online price incentives
were considered in [18]. Different from the above methods,
we establish a framework aiming at balancing the usage of
bikes instead of the stock level of stations.

8 CONCLUSION

In this paper, based on the analysis of general characteris-
tics, spatial temporal patterns and bike utilization in bike-
sharing, we propose a novel architecture of a utilization-
aware trip advisor which engages users to balance bike
usage and prolong the maintenance intervals of bikes. Start-
ing from ensuring users’ success rate of rental and return,
the advisor is designed to dynamically recommend the
optimal stations based on their current activeness of bike

usage. We evaluated the proposed system through extensive
simulations using historical records from the world’s largest
bike-sharing system, confirming the effectiveness of our
framework.
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