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Abstract—Given a wide spectrum of demands for indoor location-based service, great research effort has been devoted to developing
indoor navigation systems. Nevertheless, due to high engineering complexity and expensive infrastructure and labor cost, scalable
indoor navigation is still an unsolved problem. In this paper, we present SWiN, a Self-evolving WiFi-based Indoor Navigation system.
SWiN provides plug-and-play and light-weight indoor navigation in a sharing manner. To alleviate the impact of the environmental
change and device diversity, SWiN extracts both the static and dynamic properties of WiFi signals including scanned AP list, variations
of signal strength and AP’s relative strength order. SWiN exploits the leader-follower structure, navigating following users by tracking
their motion patterns to provide real-time navigation guidance. In specific, during navigation, SWiN utilizes a light-weight
synchronization algorithm to synchronize multi-dimensional WiFi measurements between leader and follower traces. Furthermore, a
trace updating mechanism is developed to guarantee the long-term utility of SWiN by extracting useful information in followers’ traces.
Consolidating these techniques, we implement SWiN on commodity smartphones, and evaluate its performance in a five-story office
building and a newly opened two-story shopping mall with test areas over 8000m2 and 6000m2, respectively. Our experimental results
show that 95% of the tracking offsets during navigation are less than 2m and 3.2m in these two environments.

Index Terms—Indoor navigation, self-evolving, WiFi-based, leader-follower, long-term utility, smartphone.
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1 INTRODUCTION

Numerous studies have been recently devoted to re-
alizing the mobile-device-based (MDB) indoor naviga-
tion/localization, using various technologies such as WiFi
[1–3], Bluetooth [4], Sound [5, 6], Ultra-wide band [7] and
etc. Conventional approaches with high-end devices, densi-
ty deployed beacons and floor plans could make the accu-
rate and real-time indoor navigation/localization a reality,
however, they are not always available and affordable. For
example, the mainstream navigation service providers such
as Google Maps and Apple Maps currently only promote in-
door positioning in limited areas such as large malls, station-
s and airports. To address this issue, an alternative way is to
utilize the ubiquitous indoor signals such as geo-magnetic
field [8, 9], light sight [10] and RF signal [11, 12], enabling
indoor localization depending on a location-representative
fingerprinting map with the association of a digital map.
Nevertheless, this kind of map-based systems have two
limitations. First, the map construction process is labour-
intensive and needs professional help. Second, due to the
difficulty of calibrating the map, the localization accuracy
cannot be guaranteed. Thus, these indoor localization sys-
tems may not be able to satisfy users’ demands.
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Although extensive efforts have been paid on feasi-
ble indoor navigation by reducing the map construction
and calibration cost [13–16], the resulting solutions induce
additional concerns for indoor navigation. For example,
crowdsourcing-based systems need a sustainable incentive
mechanism [17–20], and model-based systems need a pre-
cise building structure information [21]. Moreover, indoor
localization system has to work with path-planning algo-
rithms to enable navigation [22]. Therefore, an ideal indoor
navigation system should avoid complicate map creation,
expert support and tedious manual for users.

Recently, there are increasing studies on easy-to-deploy
navigation systems, which do not depend on the pre-
deployed comprehensive map or path-planning algorithms.
In these literatures, the well-known leader-follower struc-
ture is commonly adopted [23–26]. Translating this structure
to the navigation case, a previous visitor acts as the “leader”
sharing his/her trace during an indoor trip with latecomers.
Then, the latecomers use this trace as a reference and track it
to the desired destination as the leader did before. Given an
example, the conference organizer can construct reference
traces to different meeting rooms for attendees, such that,
attendees are able to find their ways to their interest rooms
by following these traces. In fact, this mechanism is widely
applied in many social apps such as WeChat, Skype and
Facebook, where a user can share his locations to his friends.
Due to the self-deployable properties, these systems provide
a more promising way to meet the ever-growing demands
for indoor navigation.

In this paper, we design a real-time indoor navigation
system called SWiN based on the leader-follower struc-
ture, which provides plug-and-play, light-weight and user-
friendly navigation without a comprehensive map and/or



localization-assisted path planing. SWiN is inspired by t-
wo characteristics of the old Chinese saying “Many hands
make light work ” : benefit and contribution. Specifically, the
previous travelers (leaders) contribute his “footmarks” as
a reference trace for the followers, who benefit from this
provided convenience for easier way-finding. Meanwhile,
the followers can also contribute to improve this service
by renewing the “footmarks” for visitors after them. SWiN
leverages the ubiquitous WiFi signal, which is extensively
distributed with densely deployed APs in indoor environ-
ments. A leader records the sensory data and WiFi signals,
using his smartphone during the trip from one position
to another position. The position-specific features extracted
from the WiFi signal (acting as “footmarks”) are combined
with the leader’s motion events (e.g., steps, turns and going
upstairs/downstairs) to construct the reference trace. As the
following visitor begins the trace, his start point is locked
on firstly. After that, SWiN navigates him to the destination
in accordance with motion hints shown on the smartphone
screen. Furthermore, the useful information in the followers’
traces are abstracted to maintain the long-term utility of
SWiN.

Based on the above paradigm, the realization of SWiN
entails particular challenges. (1) SWiN is installed on the
smartphone and expected to guide the follower with timely
and accurate motion hints from the start point to the fi-
nal destination. With interferences from multi-path effect,
device-diversity and users’ different walking patterns, it
is possible that untimely and wrong instructions are dis-
played, leading to a failed guidance. Therefore, how to ac-
curately compare and synchronize the follower’s trace with
the reference trace is the most important and challenging
issue. (2) Incorrect and untimely instructions or intended
actions (e.g., taking a deliberate turn) can deviate the fol-
lower from the correct path. Due to the limited information
provided by a single reference trace in the leader-follower
structure, SWiN must detect this deviation timely and nav-
igate the follower back to the right location. (3) As some
traces may be visited frequently by users, an user-friendly
navigation system should remain effective for a long period
of time. To avoid rebuilding the reference trace repeatedly,
SWiN has to exploit the information in the followers’ traces
to automatically update it. Since there is no direct control of
follower’s behaviors, utilizing traces with low qualities may
seriously affect the updating promotions.

In this study, we devise efficient solutions to address
these issues. First we propose a new quantification metric to
measure the dissimilarity between two WiFi signal samples.
To alleviate the impact of the multi-path effect and device
diversity, both the static features (e.g., the sensed AP set and
APs’ relative strength orders) and dynamic features (e.g., the
gradient information) are extracted from the WiFi signals.
These features are overall considered to form a composite
metric for calculating the dissimilarity at each point as the
follower tracks the reference trace. We observe that the
quantification result has nice properties for precise trace
synchronization. During the navigation phase, we propose
a self-calibration strategy to guarantee the accuracy of the
synchronization result. Specifically, the local optimums of
the online signal match algorithm are stochastically cali-
brated by a parallel global optimum algorithm. Moreover,

the abnormal change of the dissimilarities along with the
synchronization results is analysed for deviation detection.
We use a statistical method to detect the beginning of the
deviation for navigating the follower back inversely, using
his own signal recordings. Furthermore, we develop a trace
updating mechanism by jointly considering the merging
and replacing process, making use of useful information in
the followers’ traces. Unlike traditional methods, it works in
a bootstrapping manner. The merging process and replacing
process operate alternately to avoid environmental changes
and accumulated merging errors.

Synthesizing the above techniques, we implement SWiN
on the Android platform. The system performances are
evaluated by conducting extensive experiments in multiple
real-world scenarios such as the office building and shop-
ping mall. More than 30 volunteers are involved and 10
miles traces are collected. The whole experiments take more
than 6 months. In experiments, SWiN shows promising
results with accurate tracking and timely instructions (95%
of offsets are within 2m in the office building and less than
10% failure rate), proper deviation warning (within 5s and
less than 10% false positive rate) and long-term utility (more
than a week).

The main contributions of this paper are summarized as
follows:

1) Our system design is centered on WiFi signals. Both
the static and dynamic properties are extracted from
WiFi signals to form a composite metric, which is
able to precisely quantify the dissimilarity between
WiFi signal samples.

2) We devise a new step-constrained hybrid synchro-
nization algorithm considering the real-time, accu-
racy and adaptivity attributes for users’ walking
progress estimation. An updating mechanism is de-
signed to guarantee the long-term usability of the
reference trace, enhancing the system’s utility and
extending the applicable cases.

3) Finally, we implement SWiN in multiple commercial
smartphones and evaluate its performances in dif-
ferent real-world scenarios such as the office build-
ing and large shopping mall. The experimental re-
sults demonstrate that SWiN can provide delightful
and satisfactory navigation service.

The rest of this paper is organized as follows. In Section
2, we give an application example and present the system
architecture. The detailed design of SWiN is provided in
Section 3. We present our mechanism for updating the
reference trace in Section 4, and evaluation results in Section
5. Section 6 reviews related works, and Section 7 concludes
the paper and presents some discussions.
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Fig. 1. An application example: (a) The first floor; (b) The second floor.



Stairs

Baro.

Step Turn Stairs

WiFi

Signal Pre.

Acc.

Real-time Navigation
Sync.

Algorithm
Deviation

Detection

Progress

Estimation
Instruction

Reference Trace Information Package (RTIP)

WiFi

Signal Pre. Step

Follower

Turn

Reference

Trace

Update

Reference Trace Construction

Gyro.

Acc. Gyro. Baro.Leader

Fig. 2. System architecture of SWiN.

Floor changes

Turns

Steps

WiFi samples

Time

RTIP

Fig. 3. The generation of RTIP.

RSS

Displacement

Checkpoint

RSS

Displacement

RSS

Displacement

RSS

Displacement

RSS

Displacement

RSS

Displacement

Fig. 4. An illustration of the position-specific
property of WiFi signal (RSS unit: dBm).

2 SWIN OVERVIEW
2.1 An application example
Considering the scenario in which Alice and her friend Bob
visit different shops in an unfamiliar shopping mall (Fig. 1).
Alice’s destination is shop A on the first floor, whereas Bob’s
is shop B on the second floor. The shopping mall is too large
for new customers to find a given place easily and quickly.
To help their businesses, the owners of shop A and shop B
have built the reference traces from the mall’s entrance E to
their respective shops. They shared these traces to a trace
center. Previously, Alice and Bob have installed SWiN on
their smartphones. Now they can download the traces from
the center, and follow the motion hints promoted by SWiN
to shop A and shop B, respectively. After they have visited
their shops, they can change their roles from the follower to
the leader. They can share their collected traces to the trace
center and contribute to update the reference traces from E
to A and B. Moreover, Alice can build a new trace from shop
A to shop C, which has not been built before. Then, Alice
can share this trace to Bob directly for him to find her.

2.2 System architecture
SWiN mainly composes of three parts: the reference trace
construction, the real-time navigation and the update of the
reference trace. Fig. 2 shows the overall design structure.

Reference trace construction. The construction process
of the reference trace starts right after the leader turns on
SWiN. It samples gyroscope, accelerometer, and barometer
readings as well as WiFi signals along the trace during the
leader’s trip. When the leader stops at the destination, SWiN
launches a series of signal processing methods to detect
the leader’s motion events such as turns, steps and going
upstairs/downstairs. Together with the preprocessed results
of WiFi signals, a reference trace information package (RTIP)
is generated. In RTIP, all motion events are indexed with the
time-stamped WiFi signals, as shown in Fig. 3. The leader
can share RTIP directly to the follower or store it in the trace
center (e.g., a remote server).

Real-time navigation. SWiN navigates the follower to
the same destination as the leader does by presenting timely
motion hints, in accordance with the synchronization results
indicated by RTIP. Along with the follower’s tracking, WiFi
signals are preprocessed and steps are measured based on
the incoming WiFi and accelerometer recordings, respective-
ly. With the previously loaded RTIP, the navigation phase
runs a signal synchronization algorithm to estimate the
portion the follower has walked. The deviation detector
following the synchronization process is used to monitor

whether or not the follower walks along the correct path.
SWiN warns the user and navigates him back when it
happens.

Reference trace updating. SWiN updates some traces
that are frequently visited by users in the trace center
to maintain their effectiveness for a relatively long time.
Actually, there are two cases should be considered. If the
user directly shares the trace to the latecomers, we do not
need to update it because the RTIP is used only once. While
if the user shares the trace to the trace center, which manages
all traces and provides them to users in need, then we
can update it by extracting the useful information in the
followers’ traces. All users can contribute to this renovation
process.

3 SYSTEM DESIGN
The following paragraphs provide details about the design
of SWiN. To provide satisfied indoor navigation service,
SWiN estimates the follower’s mirror position in accordance
with the reference trace. To some extend, SWiN is designed
as an up-to-date system for commercial and social scenarios,
which inevitably brings in a few challenges. First, both the
leader and follower only walk along the pathway once and
pass every physical position in a very short time. Thus,
the collected WiFi signal may not be that representative.
Second, with the limited information provided by this single
reference trace, the user, if he/she has deviated from the
correct path, has to be navigated back. SWiN should enable
this capability for this annoying case. Third, due to users’
different walking speeds and the device diversity, SWiN
should be designed to be adaptable for these interferences.

3.1 WiFi signal preprocessing
During the walk, WiFi antenna in the smartphone scans
the surroundings at a fixed sampling rate. We record the
sensed APs’ information including MAC address, RSS value
and timestamp. To improve the position-specific attribute
of WiFi signals, we extract both the static and dynamic
properties of them.

3.1.1 Static property
Even though APs are densely distributed in the indoor
environments, we can not assure that every AP can be
sensed by the smartphone. In fact, a smartphone can only
capture a subset of visible APs at a given position. This is
correlated with the AP’s response rate. It has been proved
that the response rate is proportional to the RSS value [42].
In SWiN, to increase the reliability of the recorded WiFi



signal, a high response rate are required by setting a RSS
threshold more than -80 dBm. Unfortunately, even some
APs with high RSS values may not stably exist, for example,
hotspots created by users. We filter out those APs which are
only sampled for a few times less than a threshold Nt, given
by

Nt =
T × Sc

S × Tw
, (1)

where T and S are respectively the time and steps taken
by the user to finish a given path, Tw is the sampling time
of the WiFi signals, Sc is the minimum steps that the AP
should be recorded. That is, if the AP is recorded less than
Sc steps, we will discard it. On the basis of steps that each
AP is sampled, we only filter out low-quality APs that are
recorded for a few times such as hotspots which may exist
temporarily and has a relatively short broadcast range.

Particularly, we observe that the APs’ strength order
along a path is position-specific. Due to the propagation
property of the WiFi signal, along the path, the signal se-
quence of a given AP shows an obvious peak (Fig. 4). Since
APs are placed at various locations in the indoor space, at
different positions, the strength orders of the recorded APs
are different. For example, the sensed AP sets at checkpoints
P1, P2 and P3 have different strength orders. Therefore, for
every recorded WiFi signal sample, we sort the sensed APs
according to their RSS values, i.e

w̄i = sort(wi), (2)

in which, wi = (ti,macoi , rss
o
i ) is the ith WiFi signal

sample after filtering out some APs using equation (1).
w̄i = (ti,maci, rssi) is the ranking result, where ti is the
timestamp. maci := {adi1, adi2, . . . , adip} is the MAC set,
where adij denotes the MAC address of the jth AP in the
ith WiFi signal sample. rssi := {ri1, ri2, . . . , rip} is the set
of RSS values, where rij denotes the RSS value of the jth
AP in the ith WiFi signal sample. p is the number of APs in
the ith WiFi signal sample.

3.1.2 Dynamic property

Since the biased RSS measurements across devices along
with transmission power control techniques of WiFi APs
undermine the fidelity of the fingerprint-based localiza-
tion/navigations systems, we leverage the more robust and
stable gradient information of RSS values. Actually, this
gradient information reflects the transition (dynamic) dif-
ference between WiFi signal samples.

Gradient code. Let W̄ := {w̄1, w̄2, . . . , w̄n} be the WiFi
signal sequence after being processed by the methods pro-
posed in Section 3.1.1. Suppose w̄i and w̄k (i < k ≤ p) are
two WiFi signal samples. The difference of the MAC sets
between these two samples is computed by

E = maci ∩mack, C = mack − I, (3)

where E is an intersection set, C is a complementary set,
which means that every element in C belongs to mack but
dose not belong to maci. We denote E and C as the sets
containing the indices of the MAC addresses in E and C ,
respectively.

Then, we compute the RSS difference by

distkj =

{
rkj − rij , j ∈ E
100, j ∈ C ,

(4)

where rkj and rij are respectively the RSS values of the
jth AP in the kth WiFi signal sample and the ith WiFi signal
sample. In order to alleviate the impact of the environmental
changes and device diversity, we map distkj to four values,
given by

ckj =


0, abs(distkj) ≤ θ,

1, distkj > θ,

−1, distkj < −θ,

2, distkj = 100.

(5)

where θ is 6 dBm, which is determined according to our ex-
perimental results. Inspired by the concept of “code alpha-
bet”, we term {−1, 0, 1, 2} as the gradient codes. Finally, we
transfer the original WiFi signal sequence to a coded WiFi
signal sequence (CWSS): W̃ := {w̃1, w̃2, . . . , w̃n}, in which,
w̃i = (ti,maci, codi). W̃ is formed by letting k− i = 1, thus,
codk = {ck1, ck2, . . .}.

3.2 Quantification of the dissimilarity
Two recent leader-follower navigation systems [23] and [25]
also adopted the WiFi signal. Zheng et al. [23] compared the
absolute RSS values between two WiFi signal samples to
update the weights of particles for the signal synchroniza-
tion algorithm. Yin et al. [25] extracted the radio and visual
features of the sequential WiFi fingerprints. Even though the
later made use of image-related features of WiFi fingerprints
for signal match, it still depends on the absolute RSS values
of APs. While it has been proved that the absolute RSS
values of APs are not stable indoors [27]. In SWiN, we do not
use the absolute RSS values. We compare the dissimilarity
between two WiFi signal samples by jointly considering
three metrics, the gradient code distance, MAC set distance
and strength order distance, to form a composite metric.

Essentially, only utilizing the difference of the gradient
codes cannot accurately quantify the dissimilarity between
two WiFi signal samples, as WiFi signal samples recorded
at different positions may have similar gradient code sets.
Using this single metric may lower the spatial discrimi-
nation of WiFi signals to a certain extend. Therefore, we
consider two other features of WiFi signals. One is the
common APs shared by two WiFi signal samples. Intuitively,
if two WiFi signal samples share more common APs, the
corresponding physical positions are closer. Nevertheless,
the number of common APs cannot exactly represent the
difference of two positions. For example, in Fig. 4, P2 and
P3 have the same AP set {AP2, AP4, AP5, AP6}. But, on the
other hand, we observe that the APs’ strength orders are
quiet different. Therefore, we also consider the difference of
the APs’ strength orders between two WiFi signal samples.

Gradient code distance. The gradient code distance
between two WiFi signal samples is used to measure the
transition difference between the corresponding physical
positions, given by

d1 =
∑
j∈Ei

|codij − codi′j |+
∑
k∈Ci

codik,

Ei = maci ∩maci′ , Ci = maci −maci ∩maci′

(6)



where codi and codi′ are respective gradient code sets in the
ith WiFi signal sample and the i′th WiFi signal sample, maci
and maci′ are the MAC sets, j in the index of an AP in Ei, k
in the index of an AP in Ci.

MAC set distance. The MAC set distance denotes the
difference of the MAC sets between two different WiFi sig-
nal samples, which is calculated using the Jaccard similarity,
given by

d2 =
maci

∩
maci′

maci
∪
maci′

. (7)

Strength order distance. Even though we can not always
obtain the same strength order of APs at a fixed point due
to device diversity and/or multi-path effect, the relative
orders of them are stable. In SWiN, we calculate the strength
order distance between two WiFi signal samples by using
the longest common sequence (LCS) solver [28], given by

d3 = Lcs(maci,maci′), (8)

where Lcs is the algorithm used to solve the longest com-
mon sequence problem.

We calculate the dissimilarity value between two WiFi
signal samples using the weighted sum of the above dis-
tances. They are normalized before being added together.
Since d1 is used to measure the transition (dynamic) differ-
ence between two WiFi signal samples, if d1 is larger, these
two WiFi signal samples are more dissimilar. Therefore, we

normalize d1 using the function g(d1) =
e
− 1

d1 −1
e−1 . We can see

that the value of g(d1) is proportional to d1 and 0 < g(d1) <
1. As for d2, it is used to measure the similarity of the MAC
sets between two WiFi signal samples. If d2 is larger, these
two samples are more similar. Therefore, we normalize d2

using the function h(d2) = e
d2
λ1 −e

1
λ1

1−e
1
λ1

(−1 ≤ λ1 ≤ 1). If

d2 is smaller, h(d2) is larger, which indicates that two WiFi
signal samples are more dissimilar. d3 is used to measure
the similarity of the APs’ strength order between two WiFi
signal samples. If d3 is larger, it also indicates that these two
samples are more similar. Therefore, we can use the same
method as h(d2) to normalize d3. Since 0 ≤ d2, d3 ≤ 1,
we have 0 ≤ h(d2), h(d3) ≤ 1. Above all, the dissimilarity
between two WiFi signal samples is given by

d = αg(d1) + βh(d2) + γh(d3)

g(d1) =
e−

1
d1 − 1

e− 1
, h(d2) =

e
d2
λ1 − e

1
λ1

1− e
1
λ1

, h(d3) =
e

d3
λ2 − e

1
λ2

1− e
1
λ2

,

where α, β, γ > 0, are the corresponding weights, which
should satisfy α+β+γ = 1, λ1 (−1 ≤ λ1 ≤ 1) and λ2 (−1 ≤
λ2 ≤ 1) are two tunable parameters, d is the dissimilarity
value. We give some intuitive analysis for the determination
of the tunable parameters λ1 and λ2. As for the function

h(x) = e
x
λ −e

1
λ

1−e
1
λ

, if −1 ≤ λ ≤ 0 and is smaller, the function

h(x) is more concex; if 0 ≤ λ ≤ 1 and is smaller, the function
h(x) is more concave. λ can be determined according to
the density of APs deployed indoors. For example, if the
deployed APs are denser, it is easier to record the same APs
at two positions, although they are relatively far from each
other. Thus, if the deployed APs are denser, under the same
x, h(x) should be larger. As for the weights α, β and γ, we
determine them through extensive experiments.

3.3 Online Navigation

The rationale of the navigation phase is to estimate the
user’s walking progress in accordance with the reference
trace. Typically, it must have the following attributes: ac-
curate, real-time and adaptable. First, accuracy is the basic
requirement for a navigation system. Second, we cannot as-
sume that the follower walks slowly enough to interact with
the system or wait for the system’s response. The forward
instructions should be shown to the user at right locations
timely. Third, SWiN must handle some uncertainties such as
device diversity, users’ walking patterns and environmental
changes.

To achieve these attributes, we devise a step-constrained
hybrid synchronization (ScHS) algorithm based on the Dy-
namic Time Warping algorithm (DTW) [29]. The main idea
is to use a step-constrained online DTW (ODTW) algo-
rithm to provide real-time signal synchronization results,
meanwhile, a modified standard DTW (MDTW) algorithm
executes occasionally to calibrate the alignment drifts for
the synchronization results. The ODTW algorithm matches
the follower’s current signal recordings with RTIP forward.
While the MDTW algorithm is executed backward to match
the follower’s current signal sequence with RTIP.

The basic ODTW algorithm aligns the follower’s incre-
mental CWSS U := {w̃u

1 , w̃
u
2 , · · · , w̃u

m} with a reference
CWSS V := {w̃v

1 , w̃
v
2 , · · · , w̃v

n}, where only the first m
samples of U are known at a certain point. The goal is, for
each a = 1, 2, · · · ,m, to find the corresponding index Iva in
V so that the subsequence {w̃u

1 , w̃
u
2 , · · · , w̃u

a} is aligned to
{w̃v

1 , w̃
v
2 , · · · , w̃v

Iv
a
}. The alignment path Path is a sequence

of tuple (a, Ia) obtained according to the cost matrix, whose
column and row denote the indices of the WiFi signal
samples in the signal sequence U and V , respectively. We
use a step-constraint condition to prevent the match result
of the ODTW algorithm from steep jumps or getting stuck
in a local minimum. This can efficiently handle the users’
walking speeds during navigation. Specifically, for a time
duration τ = tua − tua′ and a threshold Sτ (in SWiN, we
set τ = 1s and Sτ = 3 since we observe that the pace
frequency of human ranges 1Hz-3Hz), the steps taken by
the leader and follower are Su

aa′ and Sv
Iaa′ , respectively.

Then, if Su
aa′ − Sv

Iaa′ ≥ Sτ (e.g., the follower speeds up),
we increase the row of the cost matrix to find an optimal
match in the reference trace. That is, we catch up with
the follower’s walking speed for signal synchronization. If
Sv
Iaa′ − Su

aa′ ≥ Sτ (e.g., the follower speeds down or stop),
we increase the column of the cost matrix to find an optimal
match in the reference trace. That is, we slow down the
forward speed of the match point in the reference trace for
signal synchronization. Otherwise, for each incoming WiFi
signal sample w̃u

a , the current nt × mt cost matrix Dt is
computed based on the past nt−1 ×mt−1 cost matrix Dt−1,
where nt, nt−1 ≤ n and mt,mt−1 ≤ m. Path forwards
by computing a new raw, a new column, or both, relying
on in which the current minimum match cost is found on
Dt−1’s frontier: a column, a raw, or the diagonal corner,
respectively.

With the ODTW algorithm, we can realize real-time
navigation and make the system adapt to users’ different
walking speeds. Nevertheless, we have two concerns about



the alignment results. The first concern is the suboptimal
match result of the ODTW algorithm. Since only the local
information is used for calculating the cost matrix, the align-
ment result output from the ODTW algorithm is known to
have alignment drifts [30]. Thus, it needs a comprehensive
study where the drifts occur and how to alleviate them.
The second concern is where exactly the follower starts.
Generally, it seems that the start point of the follower’s
sequence U is the same as the reference sequence V . But
we can not assure that, since the follower might not start
absolutely at the same physical point as the leader does. This
mismatch from the beginning may affect later alignments.

To overcome these concerns, we propose several counter-
measures in SWiN. First, we use CWSSs as inputs to the syn-
chronization algorithm and calculate the cost matrix using
the dissimilarity quantification method proposed in Section
3.2. Second, we specify a local weighted recursion cell in
OTDW and adaptively change the weights to calibrate the
alignment drifts using MDTW. Third, we adopt an average
KNN method to lock on the follower’s start point.

Update the weights of the cost cell with MDTW. The
main part of ODTW algorithm is the cost cell calculated for
each alignment. It can be formulated as:

D(i, j) = min


δ1 ∗ d(i, j) +D(i− 1, j)

δ2 ∗ d(i, j) +D(i− 1, j − 1)

δ3 ∗ d(i, j) +D(i, j − 1)

(9)

where D(i, j) is the value in position (i, j) of the cost matrix
D, d(i, j) is the current dissimilarity value, δ1, δ2 and δ3
are three local weights. We develop the MDTW algorithm
to detect alignment drifts and adaptively change the local
weights δ1, δ2 and δ3 to calibrate them. It needs to note that
MDTW and ODTW run in two parallel threads, and they
can exchange information.

The MDTW thread contains two steps. First, after a
match result (a, Iva ) is obtained in the ODTW thread, we
run a standard DTW algorithm in parallel using the current
sequence U = {w̃u

1 , w̃
u
2 , · · · , w̃u

a} and the reference sequence
Vs = {w̃v

1 , w̃
v
2 , · · · , w̃v

Ia
}. This process outputs an alignment

path Pathm = {(1, Imv
1 ), (2, Imv

2 ), · · · , (a, Imv
a )}. Since the

execution speed of this thread is much slower than the
ODTW thread, a new online match result has been gen-
erated when we get Pathm. To catch up with the follow-
er’s current signal readings, we run an ODTW algorith-
m serially in the MDTW thread starting from the point
(t, Imv

t )(t = a− 10) in Pathm to compute a new alignment
path Pathme. Because all the follower’s past signals are
used, the alignment path Pathme is more accurate than
the online alignment result. Suppose the current length of
the follower’s trace is l. The match result of the follower’s
lth WiFi signal sample obtained from the MDTW thread
is (l, Ievl ). And the match result obtained from the ODTW
thread is (l, Ivl ). Then, if Ievl ̸= Ivl , there are match drifts
in the ODTW thread. Initially, we set the local weights as
δ1 = δ3 < δ2 for avoiding vertical or horizontal segments in
the warping path (i.e., the alignment path). We calibrate the
alignment drifts by changing the local weights according to:
1) if Ievl > Ivl , we set δ1 > δ2 > δ3, that is, we speed up the
forward speed of the match point in the reference trace for
signal synchronization; 2) if Ievl < Ivl , we set δ1 < δ2 < δ3,

that is, we slow down the forward speed of the match point
in the reference trace for signal synchronization.

The follower’s start point detection. Identifying the
follower’s start point is critical for the synchronization pro-
cess. In SWiN, we adopt an average KNN method to lock
on the follower’s start point. Specifically, we use the WiFi
signals collected by the follower during the first 3s. The
top K nearest points are selected as candidates according to
dissimilarity values, which are calculated with the MAC set
distance and strength order distance (i.e., α = 0, see Section
3.2). Finally, the follower’s start point can be determined
by Ini = Rnd( 1

K

∑K
i=1 Pi), where Ini is the detected

start point, Pi denotes the candidate point, Rnd(·) is the
rounding operation of a number.

3.4 Turn detection

Due to the ferromagnetic interference, we cannot use the
compass to detect turns in indoor environments. In SWiN,
turns are detected by fusing measurements both from the
accelerometer and gyroscope. Since the user may place
his/her smartphones arbitrarily on body, we need to deter-
mine the smartphone’s attitude first. To avoid the Gimbal
Lock problem [31] that occurs when rotating the three-
dimensional smartphone, we adopt the quaternion method
[32] to estimate the smartphone’s attitude. After that, we
integrate the gyroscope’s z-axis readings to compute the
turn angle. Besides, we adopt the complementary filter [33]
to guarantee the detection accuracy. We have conducted
experiments to show the effectiveness of our method. We
placed the smartphones (Samsung Galaxy S5) at different
positions on the volunteer’s body (Fig. 5) and collected the
readings of gyroscope and accelerometer when the volun-
teer turned 90o. We compared the turn angles calculated us-
ing our method and directly integrating the z-axis readings
of gyroscope without any preprocessing. The results were
plotted in Fig. 5. We can see that the turn angles calculated
using our method are around 90o when the phone is placed
horizontally, vertically and in the hand. Even though it is
74o when the phone is placed in the pocket, it is enough for
us to detect a turn. While if we directly integrating the z-
axis, the results are satisfied when the smartphone is placed
horizontally and vertically, but the method fails to detect the
turn when the phone is placed in the hand and the pocket.

Fig. 5. The detection of turn angles with our method and integrating of
gyroscope’s z-axis readings without any preprocessing.
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CUSUM method.
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3.5 Level-change detection
Newly released smartphones are commonly equipped with
barometer, which is a sensor can be used to detect level
changes. But the noisy measurement and the absence of
ground truth limit its application to determine the exact
level in indoors. Nevertheless, we observe that the pressure
value (i.e., the barometer’s reading) drops down/rises up
quickly when we go upstairs/downstairs. Therefore, we
exploit the variation trend of the barometer readings to
detect level changes. References [24] and [25] also adopted
the barometer for detecting levels, but their detection meth-
ods depend on a heuristic threshold, which is not adapt
to buildings with different floor heights. By using a single
sensor such as accelerometer [34] or barometer [35], the
authors realized a feasible, scalable and high-accuracy floor
localization system when the floor height is unknown. But
these map-based methods cannot be directly used in our
paper since SWiN does not depend on map and localization.

In SWiN, we introduce the CUSUM method to detect
level changes. CUSUM is a statistical analysis method used
for monitoring abnormal changes when the data sequence
is monotonic increasing or decreasing [36], given by

Xi = Xi−1 + |bi − b̄|, X0 = 0, (10)

in which bi is the pressure value, b̄ is the average of all
pressure values in the signal sequence, Xi is the current
sum. The abnormal change point of the original sequence
can be determined according to the extreme point of X .
To detect the level change, first of all, we use a sliding
window to calculate the variance of the barometer readings.
As shown in Fig. 6, we can see that its value reaches a
peak during the level-change period. According to the peak
range of the variance, we segment the pressure sequence
into multiple subsequences. For each subsequence, we use
CUSUM to detect where the stairs begin. As shown in Fig.
7, the extreme points of the CUSUM statistic correspond
to the start points of the level changes. We observe that
the above method can also be used when the user takes
escalators. When taking elevators, the user must determine
which floor he/she needs to go first. To solve this issue, we
ask the leader to provide the floor number of the destination.

3.6 Deviation detection
Apart from detecting turns and level changes, we also need
to detect the followers’ deviations from the correct path for

some incidents such as being attracted by some interesting
things. To handle this problem, we introduce a deviation
detector following the synchronization process. Specifically,
we first use a threshold-based method to automatically
detect and warn the follower’s deviation. Second, SWiN
finds out the start point in the timestamp where the follower
goes off the correct path. Based on this result, third, we
separate out the subsequence of the follower’s trace from
the deviation point to the warning point and reverse it. Since
the reverse navigation works the same with the forward
process, this subsequence can be used as a new reference
trace for navigating the follower back.

In SWiN, the follower’s deviation is detected by tracking
the dissimilarity value calculated with the ScHS algorith-
m. The insight is simple: the farther the offset from the
correct path, the recorded WiFi signals are more different.
To this end, SWiN keeps monitoring the dissimilarity value
computed in the ScHS algorithm during the follower’s trip.
When the dissimilarity value is larger than a threshold (i.e.,
0.5), the follower is warned about the deviation. Further,
we detect the deviation point using the CUSUM method.
Taking Fig. 8 as an example, in our experiment, the follower
deviated the target trace at 48s during the trip. We can
see that the dissimilarity value increases significantly after
that. The follower was altered at the warning point (where
the arrow points to in the figure). In the figure below,
the CUSUM statistic is calculated using the sequence of
dissimilarity values before this warning point. According to
the dark vertical line, the deviation point was successfully
detected at around 48s. With this result, we separated the
follower’s signal sequence upon this point and generated
a reference trace by reversing the subsequence. Then, the
follower tracked this new reference trace back to the correct
path.

4 REFERENCE TRACE UPDATE

For some “hot” traces which are frequently visited by users,
SWiN should maintain their usability even when the indoor
environments have been changed. Previously, we assume
that the leader constructs the reference trace just once, which
is acceptable when the reference trace is temporarily used.
But it cannot guarantee the long-term usability of some
frequently visited traces. In SWiN, we handle this issue by
using an updating mechanism for refreshing the reference
trace timely.



First of all, in order to quantify the environmental
changes in a given trace, we introduce a concept named
“trace diversity”. It is actually used to measure the diversity
of APs deployed around a given trace, given by

Diver = e

−
n∑

i=1

piln(pi)

(11)

where n is the total number of the sensed APs along a given
path, pi is the proportion of the ith AP among all APs, Diver
denotes the trace diversity. We did experiments to show that
we can use “Diver” to quantify the environmental changes.
Fig. 9 shows the variation of Diver in a pathway for more
than 4 months. We calculated Diver at different times in
a day and averaged their results. For the first 40 days, we
observed the values of Diver varied due to the interferences
from weathers and human activities. At the 40th day, we
deliberately switched off some APs along the trace. We
can see the values of Diver decreased dramatically. This
indicates that the sensed WiFi signals can be changed a lot
due to environmental changes.
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Fig. 9. The variation of the trace diversity for nearly 4 months.

Based on the above observations, we find that we must
update the reference trace since SWiN may fail to work at
some time due to environmental changes. We take advan-
tage of the useful information contained in the followers’
traces. In fact, the new information in the followers’ traces
can reflect the environmental changes to a certain extent,
which can refresh the original reference trace. Technically,
we update the reference trace by jointly considering the
merging and replacing process. These two processes com-
plement to each other. That is, the merging process fuses the
past traces with the new trace, while the replacing process
retrieves the whole reference trace due to the environmental
changes and accumulated merging errors.

Note that updating the reference trace depends on the
followers’ inconsistent-quality traces, we encounter a set of
challenges when considering extracting useful information
from them. (1) Devise diversity: different WiFi chipsets are
sensitive to different WiFi APs and channels. Thus, even at
the same location, the recorded WiFi signals can be different
across heterogeneous devices. (2) Users’ casualty behaviors:
as most followers are unfamiliar with the indoor environ-
ments, they may not walk as steadily as the leader does.
Thus, we cannot guarantee the reliability of the provided
traces.

4.1 The merging process

We merge the reference trace built by the leader with the fol-
lowers’ traces off-the-shelf in the trace center. As the leader
and follower might carry different types of smartphones, we
cannot directly average their absolute RSS values. In SWiN,

we use the following normalization method to alleviate the
impact of the inconsistent WiFi recordings. That is,

r̃ssij =
rssij − rssmin

i

rssmax
i − rssmin

i

, (12)

where rssij is the RSS value of the ith AP in the jth WiFi sig-
nal sample, rssmin

i and rssmax
i are respective the minimum

and maximum values of this AP along a given trace, r̃ssij
is the normalized result. Before normalization, we adopt
an offline standard DTW to match the leader’s trace with
the follower’s trace. According to the alignment path, for
each matched pair, we average the normalized results under
the constraint that the dissimilarity value between these
two WiFi signal samples is less than a certain threshold.
Additional APs in the follower’s WiFi signal sample are
added to the matched sample in the reference trace.

We conducted experiments to illustrate the necessity for
normalization. As shown in Fig. 10, the RSS values of an AP
along a trace were recorded by four different smartphones
(vivo-X6D, Xiaomi HM 1SW, HUAWEI VNS-AL00 and Sam-
sung Galaxy S5). We can see that the absolute RSS values
have the same trend but with different magnitudes, while
the normalized results track the trend and almost have the
same magnitude. This indicates that the normalization can
eliminate the impact of device diversity. Since the normal-
ization process does not affect the variation trend of RSS
values, the synchronization algorithm ScHS used in Section
3.3 works normally without any modification.
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Fig. 10. An illustrative example for the normalization method.

4.2 The replacing process
Even though the merging process can alleviate the impact of
the environmental changes, the merging errors will accumu-
late with time due to mismatches. This makes it a necessity
to replace the reference trace when it becomes unsatisfied
for navigation. Heuristically, we propose an event-triggered
method to decide whether the reference trace should be
replaced or not.

There are two events that can activate the replacing
process: after a time period Tu and regional environmental
changes. There is no priority between these two events. Tu

is determined based on the observation of the navigation
failure rate FR = # failures

# experiments , where #failures and
#experiments respectively denote the total number of nav-
igation failures and experiments. Navigation failure means
SWiN fails to guide the follower to the correct destination.
The explicit value of Tu will be evaluated in Section 5. As
for the environmental change, the worst case is that the
change is suddenly and in a large-scale, thus, nobody can
be successfully navigated to the destination. In other words,
the reference trace cannot be used anymore. In that case,



Fig. 11. The office building.
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Fig. 12. The shopping mall.

the only way to retrieve the reference trace is to rebuild it
again. Here we consider a weaker case that the value of
trace diversity is beyond a threshold compared with that of
the original reference trace. When it happens, we replace
the reference trace with a new one selected in the latest
followers’ traces.

Note that even though the replacing process is activated,
it does not mean that we will replace the reference trace with
an arbitrary trace selected from the followers’ traces. We
determine whether the trace is qualified or not by using an
verification method based on the stability of the users’ steps.
Specifically, we calculate the variance of the time taken by
the follower’s each step in a sliding time window first. We
denote it as V1, which is a sequence. Then, we compute
V1’s variance v2. Actually, v2 can indicate the stability of the
follower’s walk along the trace. We observe that when the
follower walks steady, v2 is relatively small. If we assume
that the leader walks steady. Then, if the value of v2 is lower
than a certain threshold comparing to that of the leader, we
choose it as a new reference trace.

5 EVALUATION
In this section, we test SWiN in real-world scenarios to help
better understanding of its effectiveness and limitations.

5.1 Implementation
We build a prototype of SWiN on the Android platform
(version 4.4.2) and use the Lenovo T440p as a remote server
(trace center). Two operational activities run separately as
leader activity and follower activity in the smartphone.
Users can play different roles by switching between these
two activities. Navigation instructions are presented in the
middle of the smartphone screen. Instructions are updated
when the follower moves forward and encounters some
specific places. In our experiments, all leaders collected the
reference traces by holding the smartphone stably and walk-
ing steadily. It is reasonable since the leader is usually the
person who tries to provide navigation service for visitors.
Actually, our system is robust with respect to the leaders’
walking habits and device placements. As for followers, we
asked them to track the traces with their normal walking
patterns. But we did not have any requirement on their
behaviours such as where they should put their smart-
phones and which side of the passage they must follow.
The recordings of IMU sensors and barometer during the
trip were used to detect motion events such as steps, turns
and level changes when the leader activity was activated.
We only used the accelerometer readings and WiFi signal
recordings when the follower activity was activated, since
we only needed them to execute the signal synchronization

algorithm. We collected the sensory data from the gyroscope
and barometer from the followers’ smartphones for the test
of the reference trace update function.

5.2 Evaluation
We conducted experiments in both an 8000m2 five-story
office building and a 6000m2 two-story shopping mall (Fig.
11 and Fig. 12), which were abundant with WiFi APs. More
than 30 volunteers were involved in the experiments that
lasted for more than 6 months. Over 15 different traces were
built with a total length more than 10 miles. For each trace,
it was a trip taking at least 2 minutes containing turns and
stairs, which was complicated enough on which intensive
efforts should be paid to find the destination without the
help of a navigation system. Followers tracked the reference
trace according to the navigation instructions promoted by
SWiN. To remind the follower of the next motion behaviour,
the instructions were displayed on the smartphone screen
in advance.

5.2.1 Determination of the weights (α, β, γ)
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Fig. 13. The alignment results of ScHC algorithm with α, β, γ as the
maximum weight, respectively.

First of all, we need to determine the values of (α, β, γ)
for calculating the dissimilarity between two WiFi signal
samples. Clearly, the values of λ1, λ2 and the values of
α, β, γ are interdependent. We fixed λ1 = λ2 = 0.2 and
strive to determine α, β, γ in SWiN. In the experiment, we
constructed a reference trace in the office building with
the volunteer walked steadily and held the smartphone
(Samsung Galaxy S5) stably. After a while, another volun-
teer tracked this trace with a steady pace using the same
smartphone. We collected these two WiFi signal sequences
and preprocessed them offline. Then, we ran the proposed
ScHS algorithm in the simulator implemented in PC (Leno-
vo T440p), which output an alignment result of these two
traces. We updated the values of α, β and γ based on the
alignment results. We used the L1 norm between the index
vector Iu = {1, 2, 3, · · · } of the followers sequence and
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the alignment result Path = {Iv1 , Iv2 , · · · } as the metric
(u and v denote these two signal sequences, respectively).
It is defined as the alignment error dlf = |Path − Iu|1,
where | · |1 is the L1 norm. Intuitively, the value of L1

norm is relatively small if the weights α, β and γ are
properly chosen. As shown in Fig. 13, we respectively set
α, β and γ as the maximum weight. We can see that the
values of dlf are all larger than 400 when γ is set as the
maximum weight, which indicates that γ should be smaller
than α and β. In the other two cases when α and β are
the maximum weights, we can see the alignment results
are better if the difference between these two variables are
smaller. Moreover, we observe that the alignment result is
the best when we set (α, β, γ) = (0.45, 0.45, 0.1). Through
more extensive experiments, we find that even though we
determine the weights based on some specific scenarios,
they work efficiently in other indoor environments.

5.2.2 Motion hints
We tested the delay of the level-change and turning tips by
measuring the difference between the warned time and the
occurred time of the true event. Level changes and turns
were detected and indexed with the leader’s WiFi signal
sequence from A to G in the office building (Fig. 11). The
reference trace included 6 specific points. A, B and C were
on the first floor. A was the start point. B was a right turn
corner. From C to D was a section of stairs. D, F and G
were on the third floor. F was a left turn corner. G was the
destination.

A shadow person (observer) walking with the follower
used a stopwatch to record the warning time of the turns
and stairs, the disappearance time of the warning instruc-
tions and the follower’s arrival time at corners and stairs.
We calculated the following delays: 1) from the warning
time of stairs to the arrival time at the first stair; 2) from
the arrival time of the ending stair to the disappearance
time of the stair warning; 3) from the warning time of the
turn to the arrival time at the corner; 4) from the complete
time of the turn to the disappearance time of the turn
warning. From Fig. 14, we can see that SWiN warned the
user about stairs 2.75s in average before the true beginning
of stairs and canceled this warning 1.2s in average after
the ending of stairs. As for turns, SWiN warned the user
2.12s in average before the corner and canceled this warning
3.83s in average after the corner. We observe that the turn
duration is relatively longer. This is because the turn event
does not happen exactly at the corner, but before and after
it to form a palpable turn angle. We also launched a survey
to investigate the users’ experiences, 85% of users thought
that SWiN provided timely navigation instructions. Besides,
they suggested that it would be better if more details were

informed during navigation, for example, the number of
steps needed from the current position to the next stairs
or corners.

5.2.3 User navigation

Follower tracking. First of all, the start point of the follower
should be locked on for the accurate navigation service. To
test this functional module of SWiN, we marked several
checkpoints in the reference trace from A to G. As the leader
met these checkpoints, he pressed the tick button to record
these events. We let 20 volunteers start at these check points.
If the volunteer was locked on these checkpoints correct-
ly, SWiN would show a right check icon on the screen.
Results shown that 80% of the followers’ start points are
correctly identified. With this detection result, next, SWiN
estimated the follower’s walking progress and promoted
timely navigation instructions. We evaluated the tracking
performance of SWiN by comparing it with FollowMe [24].
We conducted experiments in two different scenarios. In the
office building, we set A to G as the reference trace (Fig. 11).
While in the shopping mall, we set P1 to P2 as the reference
trace (Fig. 12). Along the target trace, we marked multiple
checkpoints in advance. When the leaders passed by these
checkpoints, they ticked these encounters in the timestamps.
These events would be shown later along with the naviga-
tion process if the follower also passed by those checkpoints.
As the follower moved forward, a shadow person (observer)
would measure the offsets from the marked checkpoints to
the poistions where the follower was warned.

We used the latest leader-follower structure navigation
system FollowMe (magnetic field-based) for comparison.
The tracking offsets are shown in Fig. 15 and Fig. 16. We
can see that 95% of the offsets for SWiN and 90% of the
offsets for FollowMe are less than 2m in the office building.
Relatively, SWiN shows a better performance. Especially
in the shopping mall, SWiN has 95% of the offsets less
than 3.2m, while it is less than 4.48m for FollowMe with
the same percentage. We also observe that the navigation
performance in the office building outperforms that in the
shopping mall using both SWiN and FollowMe. We think
this is because the reference trace in the office building was
narrower, and there were customers moving around when
we did experiments in the shopping mall. Moreover, we
conducted experiments to prove the robustness of SWiN
with respect to the leaders’ walking behaviours. We found
that 90% of the tracking offsets are less than 2.0m in cas-
es when the leader temporary stopped or stepped down,
wagged from side to side along the trace and placed the
smartphone in his/her pocket. According to our survey,
most users were satisfied with the offset less than 4m.
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Comparison tests. Next, we analysed the tracking per-
formance of SWiN with different synchronization algo-
rithms. Four synchronization algorithms were tested. They
were: ScHS algorithm, ODTW algorithm, gradient-based
ScHS algorithm and strength order based ScHS algorithm, in
which the gradient-based ScHS algorithm uses the gradient
code distance and the MAC set distance (i.e., γ = 0), while
the strength order based ScHS algorithm only uses the
strength order distance (i.e., α = β = 0). For each algorithm,
we let 10 volunteers track the reference trace A to G for more
than 10 times. After they have finished, we recorded their
offsets and averaged the failure rates (defined in Section 4.2).
We showed the experimental results in Fig. 17 and Table 1.
We can see that ScHS algorithm used in SWiN has better
performance than the other synchronization algorithms.
And the last two algorithms have higher failure rates, which
are more than 20 %. We think this is because only a single
reference trace is provided for navigation, which limits the
discrimination power of positions for the gradient-based
and strength order based ScHS algorithm, thus, increasing
the tracking offsets and failure rates.

TABLE 1
Failure rates using different synchronization algorithms

ScHS in SWiN ODTW gradient-based strength order based

7.3% 15.2% 22.1% 38%

Heterogeneous devices. We also validated the tracking
performance of SWiN using different devices. In this ex-
periment, we used four types of smartphones: Samsung
Galaxy S7, Samsung Galaxy S6, Samsung Galaxy S5, and
Samsung Note 4. To evaluate the impact of device diversity,
we took the following experimental scheme. Firstly, four
volunteers collected four different reference traces carrying
these smartphones both in the office building and shopping
mall. Then, for each reference trace, an volunteers used four
different smartphones to track it respectively. We plotted
the average offsets in Fig. 18 and Fig. 19. We can see that
different smartphones may result in different offsets, but
most of them are less than 1.6m (in average) in the office
building and 2m (in average) in the shopping mall. The
variation of the tracking offset across devices is because
the execution times of the MDTW thread are different with
different devices, resulting in different calibration times for
the synchronization drifts caused by the ODTW thread.
Moreover, the extensive experiments show that SWiN is also
adaptable to smartphones produced by different manufac-
tures other than Samsung.

5.2.4 Deviation detection
SWiN should handle the follower’s deviation from the tar-
get trace and alert him/her timely. In the deviation detection

experiment, we let 4 volunteers track the reference trace A to
G in the office building. To evaluate the deviation-detection
performance of SWiN, volunteers intentionally deviated at
some pre-set points. For example, the first volunteer did
not take a right turn at point B but went straight to J;
the second volunteer missed the stair warning at point C;
the third volunteer climbed to the fourth floor but not the
third floor at D; the fourth volunteer took a wrong turn at
point F to H. Every volunteer repeated the deviation event
more than 10 times for each pre-set deviation detection
threshold δ. We changed δ from 0.1 to 0.9. If 1 − d (d is the
dissimilarity value calculated with the ScHS algorithm) was
less than δ, SWiN warned the follower about the deviation.
In experiments, volunteers ticked the timestamp when they
exactly deviated the corrected path. We recorded the delay
from the tick point to the warning point. In fact, it is possible
that the deviation detector is incorrect, mistaking the normal
matches as deviations. It depends on the value of δ.

We plotted the warning delay and the false positive rate
in Fig. 20. It shows that if δ is smaller, the false positive rate
is smaller as well, but the delay for detecting the deviation is
longer. For example, if δ is 0.15, the warning time is 15s and
the false positive rate is 0.01. But if δ is 0.85, the alert time is
3.8s and the false positive rate is nearly 100%. In SWiN, we
set δ to be 0.5, because we observe that about 100% of the
dissimilarity value in a satisfied alignment is less than 0.5
(i.e., 1− d is bigger than 0.5).

5.2.5 Reference trace update
For traces which are visited frequently by users, we update
them offline in the trace center to guarantee their long-term
usability. The updating mechanism is introduced in Section
4. To validate its effectiveness, the trace center stored all
users’ traces from A to G in the office building. We did this
experiment for nearly a month. Everyday a random number
of volunteers tracked the target trace at different times and
reported their offsets and failure rates to us. We calculated
the average values of the offsets and failure rates everyday.

We did three comparative experiments in the same sce-
nario. They were: 1) the reference trace was not updated;
2) the reference trace was updated only using the merging
process; 3) the reference trace was updated only using the
replacing process. For the first case, we plotted the tracking
offsets and failure rates in Fig. 21 and Fig. 22, respectively.
We can see that without updating the reference trace, the
offset increases with time. After a week, it reaches more
than 4m. The failure rate increases to be more than 40% as
well. This indicates a terrible performance degradation after
a week if we do not update the reference trace.

In the second case, we merged all the followers’ traces
with the reference trace. And in the third case, we asked
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Fig. 20. The relationship of δ with the deviation-
detection delay and the false positive rate.
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Fig. 21. The variation of the tracking offset with
time.
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4 volunteers tracked the reference trace walking steadily
everyday, whose traces would be candidates for a new
reference trace. Fig. 23 shows the results of these two cases.
We can see that, when updating the reference trace only
with the merging process, the failure rate of SWiN increases
as well. But it is much better than that in the first case. The
reason for the performance degradation is that the fusion
errors will accumulate with time due to mismatches. After
10 days, the failure rate is more than 50%, which indicates
that the reference trace can not be used anymore. Therefore,
we set the time period Tu (see Section 4.2) equal to 10 to
replace the reference trace in SWiN. As for the third case,
the failure rate remains around 10%, which is more stable
than the other two cases. However, in practice, it is not easy
to find a stable trace from the followers’ traces everyday.
The latecomers may provide low quality traces since most
of them visit the building for the first time.

5.2.6 Energy consumption of SWiN
Due to the limited battery energy and mobile property of the
smartphone, the energy consumption of SWiN is one of the
critical metrics that the user might worry about. We evalu-
ated the energy consumption of SWiN using the Monsoon
power monitor, which is a tool widely used to measure the
power consumption of the mobile devices [37]. During the
experiment, we turned off all background applications, but
turned on the WiFi module and sensors such as gyroscope,
accelerometer and barometer to collect the necessary signals.

Fig. 24 and Fig. 25 shows the current measurements
when running SWiN on Samsung Galaxy S5. As the power
consumption shown in Fig. 24, from 0 ∼ 20s the smartphone
was in sleep mode. The phone was woke up at around 20s.
We activated the leader activity of SWiN at 50s and built
the reference trace for about 35s. Similarly, Fig. 25 shows the
power consumption of the follower activity. The navigation
phase was running from 45s to 90s. From 45s to around 55s,
SWiN tried to lock on the start point of the follower.

We compared the energy consumption of SWiN with
FollowMe and Travi-Navi [23] (image based). To avoid
the impact of different implementation devices of SWiN
(Samsung Galaxy S5), FollowMe (Samsung Galaxy S4) and

Travi-Navi (Samsung Galaxy S2), we only focus on the
incremental energy consumption when these systems start
to run. As shown in Fig. 24 and Fig. 25, the average runtime
currents of SWiN are 293.4mA and 334.8mA in the RTIP
construction process and the navigation phase, respectively.
According to the data from [24][23], we listed the energy
consumption of these three systems in Table 2. We can
see that the energy consumption of SWiN is lower than
Travi-Navi but higher than FollowMe. This is because SWiN
does not use the energy-hungry sensor such as camera
but needs to turn on the WiFi module. And instead of
using the computation-intensive particle filtering algorithm
in Travi-Navi, SWiN uses the light-weight synchronization
algorithm modified from DTW algorithm. But this two-
thread ScHS algorithm consumes more energy than the
signal synchronization algorithm in FollowMe. Even though
SWiN is more energy-efficient, the navigation accuracy is
higher in Travi-Navi (90% of the offsets are less than 1.6m).
Moreover, although the runtime current of the start point
detection process is much higher (i.e., 453.4mA), we can
offload it to the trace center for further reducing energy
consumption.

TABLE 2
Energy consumption of indoor navigation systems

System Trace construction (Current) Navigation (Current)
Travi-Navi 433.4mA 349.5mA

SWiN 293.4mA 334.8mA
FollowMe 224.6mA 303.4mA

6 RELATED WORK
In the recent decade, indoor navigation/localization has
been extensively studied in various areas. Some researchers
hold that indoor navigation is a kind of location based ser-
vice (LBS). RSSI fingerprinting-based localization approach-
es are adopted by a large body of indoor localization system-
s. The main idea is that the signal signature at every location
can be used to build a fingerprinting map. Gloc [27] presents
a robust indoor localization system which builds a gradient
map based on the fingerprinting map. Map information in
this paper has high dimensions by using the up, down, right



and left relative RSSI values. Generally, fingerprinting-based
localization systems always need to build a comprehensive
map, which costs considerable manual efforts. We design
SWiN as a plug-and-play system, it does not need a map
but only a single reference trace.

There are also indoor navigation systems similarly de-
signed with our system. In Escort [38], dead-reckoning
techniques and crowd encounters’ information are used to
provide optimal paths for users. However, it requires pre-
deployed audio beacons, and the navigation results calculat-
ed in the server side bring too much delay, both of which im-
pairs the usability of the system. Travi-Navi [23] is a vision-
guided system, which can help users to easily bootstrap and
deploy indoor navigation services without building entire
localization system. It uses the Leader-Follower structure,
and employs particle filter algorithm to merge WiFi signals,
geo-magnetic signals and inertial signals to provide accu-
rate navigation. However, it is computation extensive and
restricts the user to hold the smartphone vertically during
walk.
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Fig. 26. The variation of signals in different sections along the same
passage. (a) Geo-magnetic signal; (b) WiFi signal.

FollowMe [24] performs a lightweight synchronization
algorithm to realize the last-mile navigation to compensate
for the outdoor GPS navigation. FollowMe leverages the
ubiquitous geo-magnetic signal. The geo-magnetic field is
affected by building structures due to the presence of ferro-
magnetic materials. These structures may act as landmarks
for object localization and tracking [24, 39–41]. As shown
in Fig. 26(a), we recorded the geo-magnetic signal along
the same 2m width passage in the right, middle and left
section, respectively. It indicates that the signal’s magnitude
profiles vary differently even they are collected along the
same passage. This may affect the navigation performance
of the leader-follower navigation system. Suppose that a
leader collects a sequence of geo-magnetic signals in the
middle section along the passage. While the follower tracks
the trace along the left (or right) section. The follower’s trace
may not match with the leader’s trace due to the different
signal profiles in different sections. This “vertical difference”
will increase the alignment drifts, and thus degrade the
navigation performance. On the contrary, the corresponding
WiFi signal profiles (especially the trends) (Fig. 26(b)) are
almost the same in these three sections. That is, if the leader
collects the WiFi signals in the middle section, the follower’s
trace is consistent with the leader’s trace regardless of which
section he/she walks along. Hence, we exploit the variation
trend of WiFi signals for navigation in SWiN.

Both SWiN and ppNav [25] make use of the WiFi sig-
nal. ppNav borrows the idea from the image processing

technique. It projects the sequential WiFi fingerprints to
a diagrammed form and extracts both radio and visual
features of the diagram to track relative locations of the
followers. However, it does not consider about the perfor-
mance degradation of the reference trace with time. SWiN
proposes a updating mechanism to maintain the long-term
utility of this navigation system.

7 CONCLUSION AND DISCUSSION
In this paper, we presented SWiN, a real-time naviga-
tion system, which enables light-weight, plug-and-play and
user-friendly navigation off-the-grid without considering a
comprehensive map or a localization-assisted path planing.
We leveraged the ubiquitous WiFi signal and extracted its
static and dynamic properties to form a composite metric
quantifying the dissimilarity between WiFi signal samples.
To provide real-time, adaptive and accurate indoor naviga-
tion, we proposed a step-constrained hybrid synchroniza-
tion (ScHS) algorithm based on the leader-follower struc-
ture. Along with the navigation process, motion hints like
turns, level changes and deviation warnings are detected
using our dedicated methods. Furthermore, we developed
an updating mechanism to guarantee the long-term usabili-
ty of the frequently visited traces. Finally, we implemented
SWiN on commercial smartphones, and evaluated it in a
five-story office building and a two-story shopping mall.
Experimental results demonstrated that SWiN can provide
delightful and satisfactory navigation service.

In the following, we discuss some limitations of SWiN
and possible countermeasures. First, even though the nav-
igation activity runs in the user end, the leaders’ privacy
may be exposed when they share their information to the
trace center. We think the anonymity technique can be used
for this concern. Second, currently, SWiN cannot re-route or
path planning for followers if they deviate from the correct
path or just want to go another way. This problem may
be solved by building a “graph” for the building using the
point-to-point reference traces based on the crowdsourcing
technology. Third, the life time (about 11 days) of the ref-
erence trace is short now. We can consider to build a large
data set which can efficiently provide personalized reference
traces for specific users. Fourth, SWiN is not flexible enough
to create new reference traces using existed traces. In fact,
through cutting and/or stitching the traces, we can create
more reference traces for the navigation service [44] if we
have collected enough traces, which definitely improves the
usability of our system.
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