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Abstract—Barrier coverage has been widely adopted to prevent
unauthorized invasion of important areas in sensor networks.
As sensors are typically placed outdoors, they are susceptible
to getting faulty. Previous works assumed that faulty sensors
are easy to recognize, e.g., they may stop functioning or output
apparently deviant sensory data. In practice, it is, however, ex-
tremely difficult to recognize faulty sensors as well as their invalid
output. We, in this paper, propose a novel fault-tolerant intrusion
detection algorithm (TrusDet) based on trust management to
address this challenging issue. TrusDet comprises of three steps:
i) sensor-level detection, ii) sink-level decision by collective voting,
and iii) trust management and fault determination. In the Step
i) and ii), TrusDet divides the surveillance area into a set of fine-
grained subareas and exploits temporal and spatial correlation
of sensory output among sensors in different subareas to yield
a more accurate and robust performance of barrier coverage.
In the Step iii), TrusDet builds a trust management based
framework to determine the confidence level of sensors being
faulty. We implement TrusDet on HC-SR501 infrared sensors
and demonstrate that TrusDet has a desired performance.

I. INTRODUCTION

Barrier coverage [1], [2] (a.k.a. intrusion detection [3])
is one of the most important applications of wireless senor
networks [4], [5]. It is concerned with the detectability of
intruders when they are crossing the border of an important
surveillance area. Due to its easy and low-cost deployment
as well as efficient intrusion detection, it has been widely
employed to prevent the unauthorized invasion in many ap-
plication scenarios [6], [7].

As we all know, sensors typically are placed outdoor for
intrusion detection. They are exposed to sunshine, wind, rain
and other environmental forces, and thus are vulnerable to
getting fault. Previous works assumed that faulty sensors are
easy to recognize, e.g., they may stop functioning or output
apparently deviant sensory data [8]. In such case, we could
facilely remove the sensory data of faulty sensors and fuse
valid sensory data to attain a good detection [4]. Nevertheless,
in practice there exist multiple types of fault. A faulty sensor
may output intrusion alarm, keep silent (i.e., no intruder is
reported) or output results randomly [9]. Further, faulty sensors
may have varying types of fault or recover to normal during
operation. What is worse, the detection accuracy of normal
sensors is dependent of the surrounding changes. Even a nor-
mal sensor could report a wrong detection result. It is, thereby,
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extremely difficult to recognize faulty sensors as well as their
invalid output. This makes fault-tolerant intrusion detection
a radically new and extremely challenging problem, which
can not be solved by existing approach, e.g., simply providing
redundant coverage (i.e., multiple sensors can simultaneously
cover the same area).

We take the first attempt to address the fault-tolerant in-
trusion detection by adopting the barrier coverage model. We
consider five typical types of fault [10], [11]: constant alarm
fault, constant silent fault, shifted output fault, random out-
put fault, and instantaneous output fault (detailed description
can be found in Sec. II-B). A faulty sensor could send a
measurement of any possible types of faulty data. Without
knowledge about which type of fault each sensor is having,
it is, therefore, extremely difficult to tell whether a sensor
is functioning normally by the output of measurement. The
challenge lies in how to dynamically identify the faulty sensors
by current and historical collective decisions from multiple
sensors and fuse the sensory data from normal sensors to yield
a high intrusion detection probability.

We propose a novel fault-tolerant intrusion detection al-
gorithm (TrusDet) based on trust management in this paper.
TrusDet is based on the rationale that the sensory data among
close sensors exhibit strong temporal and spatial correlation
and thus a faulty sensor can be identified if it behaves statis-
tically inconsistently from other normal sensors. It comprises
of three components: i) sensor-level detection, ii) sink-level
decision by collective voting, and iii) trust management and
fault determination. Summarizing, our contributions in this
paper are three-fold:

1) We formulate the problem of fault-tolerant barrier cover-
age in wireless sensor networks, by taking into account
multiple types of fault and detection uncertainty.

2) We design a novel trust management based intrusion
detection algorithm (TrusDet) to tackle the problem.
TrusDet exploits temporal and spatial correlation of
measurement data among sensors to attain a high-
accuracy and robust detection probability and builds a
trust management framework to dynamically update the
confidence level of sensors being faulty.

3) We implement TrusDet on HC-SR501 infrared sensor.
We validate the coverage model adopted in this work
and demonstrate that TrusDet has a very low false alarm
rate in practice.



The remainder of the paper is organized as follows. We
introduce the fault-tolerant barrier coverage in Sec. II. We
design a trust management based intrusion detection algorithm
(TrusDet) in Sec. III. We implement TrusDet on HC-SR501
infrared sensor and perform experiments to evaluate the per-
formance of TrusDet in Sec. IV. We conclude the paper in
Sec. V.

II. PROBLEM FORMULATION

In this section, we first provide the coverage model and
sensor fault model, and then elaborate on the network model.

Fig. 1. The coverage model.

A. Coverage Model

We adopt a directional coverage model. Specifically, the
sensing region of each sensor i is characterized by a circular
sector centered at i of radius R and the central angle θ, as
illustrated by Fig. 1. Within the sensing region, the detection
pd is probabilistic since sensors are typically placed outdoor
and the sensing accuracy could be impacted by various envi-
ronmental factors:

pd =


1, if x ≤ R′, φ ≤ θ

2

e−λxβ

, if R′ < x ≤ R,φ ≤ θ
2

0, otherwise
(1)

where λ and β are constants related to the sensor type,
R′ is the range within which an intruder can be detected
deterministically, R is the maximum sensing range, and φ is
the orientation angle of the sensor. We note that the directional
coverage model is a good approximation to the realistic
sensing region of some passive sensors and has been widely
employed in the literature [12], [13]. We assume that sensors
are homogeneous, i.e., each sensor has the same coverage
model. In practice, this can be guaranteed by purchasing the
same type of sensors for the same application scenario and
adjusting their sensitivity to the same level.

B. Sensor Fault Model

A variety of faults may occur to sensors during operation.
Most existing literature assumed that sensors will stop func-
tioning once they get faulty. Based on such assumption, it is
easy to recognize the faulty sensors. In practice, faulty sensors
may continue to contribute sensory data. For example, if a
sensor is partially damaged, it may capture very weak signal
strength regardless of the existence of intruders. Consequently,
the sensor could not detect any intrusion and will keep silent
constantly. To the contrary, if normally-closed switch output
is adopted at a sensor [10], the sensor will keep sending
alarm message of intrusion when a cable is broken. Common

faults occurring to sensors can mainly be categorized into the
following five types [10], [11]:

• Constant alarm fault: the faulty sensor will output
constant alarm message regardless of the existence of
intrusion;

• Constant silent fault: the faulty sensor will keep silent
constantly regardless of the existence of intrusion;

• Shifted output fault: the faulty sensor will output
message which is opposite to what it captures;

• Random output fault: the faulty sensor will output
silent and alarm messages randomly regardless of the
existence of intrusion;

• Instantaneous output fault: the outputs of the faulty
sensor are incorrect for a short time, after which it
becomes normal.

C. Network Model

We consider that a wireless sensor network, comprising of
a set N = {1, 2, · · · , n} of sensors, is deployed around the
perimeter of an important area (such as precious infrastructure
or military base) to detect intrusion. For easy presentation,
we assume that the perimeter of the important area is a line
segment. We evenly distribute n sensors along the straight
perimeter so that the distance between every two adjacent
sensors along the perimeter is the same. Denote the distance
between two adjacent sensors by d. The connectivity of the
network can be guaranteed when the communication range is
larger than d [14]. Otherwise, we can reduce d to ensure the
network connectivity.

The whole operation of the sensor network is divided into
time slots. The duration of one slot is denoted by T0. In each
slot, each sensor monitors its surrounding to tell if there is an
intruder. It sends an alarm message of intrusion to the sink
if the received signal strength exceeds a constant threshold;
otherwise, it does nothing, i. e., keep silent. Since detection
output by single sensor is unreliable, it is desirable to provide
multiple coverage. We begin with formally defining (k, δ)-
coverage.

Definition 1 ((k, δ)-Coverage): A point P is said to be
(k, δ)-covered if there are at least k sensors, each of which
can detect the intruder at P with a detection probability no
less than δ. Equivalently, we say the sensor network provides
(k, δ)-coverage to point P . An area Ω is (k, δ)-covered if every
point in Ω is (k, δ)-covered.

Definition 2 (The Detectability of a (k, δ)-covered area):
Given an area Ω, which is (k, δ)-covered, its detectability,
denoted by D(Ω), is defined as the shortest distance for an
intruder to cross Ω.

Given k, δ and the application requirement D(Ω), it is easy
to calculate d. The radius is denoted by rδ when detection
probability equals to δ. We have

d =
2

k
×

−D(Ω) tan π−θ
2 +

√
r2δ tan

2 π−θ
2 + r2δ −D2(Ω)

tan2 π−θ
2 + 1

(2)



We proceed to define the neighbors of each sensor i.
Definition 3 (Neighbors): Given a (k, δ)-covered area Ω,

the neighbors of sensor i, denoted by Ni, is the set of sensors
which cover the same Ω as sensor i.

The definition of neighbors defined in this paper is quite
different from those in literature. After sensor deployment, we
have a (k, δ)-covered area with detectability D(Ω). When an
intruder comes, k sensors could possibly report intrusion alarm
messages, which could be utilized to yield a robust detection.
However, due to the presence of sensor fault, a sensor may
output intrusion alarm, keep silent (i.e., no intruder present)
or output results randomly. Since the detection by normal
sensors is probabilistic, even a normal sensor could send a
wrong detection result. A critical problem that comes is how
to recognize the faulty sensors and fuse the sensory data to
attain a high-accuracy and robust detection. Our goal in this
paper is to detect the intrusion and recognize the faulty sensors
with maximum accuracy, simultaneously.

III. FAULT-TOLERANT INTRUSION DETECTION

In this section, we design a trust management based intru-
sion detection algorithm (TrusDet) to solve the fault-tolerant
barrier coverage. The main rationale behind TrusDet is that we
exploit the temporal and spatial correlation of alarm outputs
among sensors to relieve the impact of detection uncertainty
and leverage historical cumulative performance to build a trust
evaluation framework.

Specifically, TrusDet consists of three components: 1)
sensor-level detection, 2) sink-level decision by collective
voting, and 3) trust management and fault determination. In the
first component, each sensor first collects the signal strength
of intruder and obtains an output based on the detection. Then
it fuses the decision by using historical detection to get a
detection result. In the second component, after collecting all
the alarm messages from sensors, the sink exploits the tempo-
spatial correlation of alarm messages to make a collective
decision, based on the observation that nearby sensors will
report similar outputs. In the third component, the cumulative
performance of each sensor is evaluated and a trust manage-
ment framework is built. The faulty sensors can be recognized
by the trust value due to their inconsistent behaviors. The
whole process can be represented by the Fig. 2.

Fig. 2. Schematic diagram of TrusDet.

A. Sensor-level Detection

Since one-time detection may cause false alarm, we intro-
duce sliding window to increase the reliability of intrusion

detection. After a sensor i takes a measurement result ci(t) at
slot t, it selects past L slots as a sliding window to obtain a

fused result ci(t) [15], i.e., ci(t) =
L∑

l=0

α(t− lT0)ci(t− lT0),

where T0 is the duration of a time slot,
L∑

l=0

α(t − lT0) = 1,

and α(t− l1T0) ≥ α(t− l2T0) when l1 < l2, which means a
closer previous result has a greater impact on the data fusion.

Given that the output of a detection is binary in general,
we choose ThD as a threshold to determine the binary output
Oi(t) of sensor i at slot t, i.e.,

Oi(t) =

{
1, ci(t) ≥ ThD

0, ci(t) < ThD
(3)

where 1 means that there exists an intruder while 0 indicates
no intruder present.

In such a scheme, a correct detection result can be diluted by
previous detection results in the data fusion. This may result
in missing alarm. To this end, the detectability D(Ω) of the
(k, δ)-covered area should be reasonably large such that an
intruder should take at least L+1 slots to cross the area. That
is

D(Ω) ≥ (L+ 1)× vmaxT0, (4)

where vmax is the maximum estimated velocity of an intruder.
For the sensors which yield an alarm of intrusion, they

send the alarm messages (i.e., digital 1) to the sink with the
predefined routing path [16]. Sensors which do not detect the
intruder keep silent. This reduces the traffic load since most
of sensors keep silent at each slot.

B. Sink-level Decision by Collective Voting
After receiving alarm messages from sensors, the sink tries

to make a final decision. Note that if sensor i detects an
intruder in slot t, then with high probability its neighbors
Ni also detect the intruder in slot t. Also, its neighbors
may detect the intruder in the last slot since the intruder
move continuously in the surveillance area. Therefore, there
is temporal and spatial correlation among the detection output
of sensors, which is exploited to yield a better fusion decision
in TrusDet.

Notice that when an intruder is present at the (k, δ)-covered
area, k sensors could detect its existence with a probability no
less than δ. Clearly, an intruder can not be present at multiple
locations simultaneously. Thus, we divide (k, δ)-covered area
further into a collection of subareas, so that all points in one
subarea are (k, δ)-covered by the same set of sensors. Local
data fusion can be performed among sensors which cover the
same subarea. In this way, we have a fine-grained collective
voting, resulting in a more reliable fusion decision.

Specifically, we redefine the sensing area of each sensor
as the area within which an intruder can be detected with
a probability larger than or equal to δ. Then the coverage
area is divided into several subareas SR = {SR1, SR2, · · · }.
Obviously, in each subarea, all points are (k, δ)-covered by the
same set of sensors. Denote the set of sensors that cover the
same subarea SR with probability larger than δ by N (SR).



To include the case of sensor fault, we differentiate the
contribution of each sensor in the same subarea. The con-
tribution is measured by the trust weight ri(t) of each sensor
i in slot t, a higher trust weight implying higher reliability of
the sensor’s output (trust management will be elaborated in
next subsection). Initially, all sensors are taken as normal and
assigned with the same trust weight.

Denote the collection of (k, δ)-covered area associated with
sensor i by Vi. For each subarea SR ∩ Vi ̸= ∅, we calculate
the fusion result Oi,spa(SR) by collective voting from sensors
in N (SR) as Oi,spa(SR) =

∑
j∈N (SR∩Vi),j ̸=i

rj(t)×Oj(t).

Then the subarea with the largest value has the highest
probability of intrusion, i.e.,

SR∗
i,spa = arg max

SR∩Vi ̸=∅
Oi,spa(SR). (5)

We proceed to include the temporal correlation of alarm
message in the data fusion. We first find all possible subareas
SR(SR∗

i,spa) from which an intruder can travel to the current
subarea SR∗

i,spa. Since an intruder can travel at most vmax in
one slot, SR(SR∗

i,spa) can be computed as

SR(SR∗
i,spa) = {SR ∈ SR : |SR− SR∗

i,spa| ≤ vmaxT0},

where |SR−SR∗
i,spa| = minP1∈SR,P2∈SR∗

i,spa
|P1−P2| is the

distance between two set of points. As illustrated in Fig. 3,
the area enclosed by the small red curve is SR∗

i,spa and the
area enclosed by the large red curve is where the intruder may
be in slot t− T0.

Fig. 3. An illustration of SR(SR∗
i,spa).

We then calculate the fusion result Oi,tem(SR) from sensors
which have temporal correlation with sensor i. For each SR ∈
SR(SR∗

i,spa), we have Oi,tem(SR) =
∑

j∈N (SR)

rj(t − T0) ×

Oj(t− T0).
Therefore, collective voting from sensors of temporal cor-

relation with sensor i can be obtained by

SR∗
i,tem = arg max

SR∩Vi ̸=∅
Oi,tem(SR). (6)

Finally, the collective voting can be performed in the
following way:

Oi(t) = Oi(t) +Oi,spa(SR
∗
i,spa) +Oi,tem(SR∗

i,tem). (7)

Denote by Ai(t) the system alarm output, which can now
be decided in the following way:

Ai(t) =

{
1, Oi(t) ≥ AlarmTh

0, Oi(t) < AlarmTh
(8)

where AlarmTh is the threshold value, Ai(t) = 1 means
system alarm for intruder presence, and Ai(t) = 0 means
system silence.

The final decision Ai(t) is then used to evaluate the detec-
tion performance of sensors, which have participated in the
voting process. For sensors which send alarm messages to the
sink, its alarm indicator Iai (t) = 1 when there exists Aj(t) = 1
that matches i ∈ N (SR∗

j,spa), and Iai (t) = 0, otherwise. For
sensors which keep silent, its silence indicator Isi (t) = 0 when
there exists Aj(t) = 1 that matches i ∈ N (SR∗

j,spa), and
Isi (t) = 1, otherwise.

When multiple sensors send alarm messages, the sink per-
forms the collective voting for each sensor, and evaluates the
detection performance of participating sensors accordingly. If
Ai = 1 for some sensor and only one subarea is found in
the spatial voting process, sink outputs one alarm message to
warn that there is one intruder; If there are multiple Ai = 1
and more than one subareas are found in the spatial voting
process, the sink outputs multiple alarm messages.

C. Trust Management and Fault Determination

With the presence of environmental noise, normal sensors
could have incorrect outputs. Taking this into account, we
introduce a trust management mechanism in this section,
which evaluates the trust values of sensors based on their
historical performance [17]. In such a way, normal sensors
would not be taken as faulty ones just because they have
made a few wrong detections. We also consider the recovery
mechanism of trust value so that the trust value of a faulty
sensor (e.g., sensors with instantaneous output fault) has the
chance to be taken as normal when it becomes normal again.

In trust management process, we adjust the trust value
of each sensor by comparing its individual decision and the
collective decision obtained at the sink. We increase the trust
value when a sensor’s decision is consistent with the collective
decision and decrease the trust value otherwise. There are four
cases: 1) Iai (t) = 1, i.e., sensor i had a right detection, 2)
Iai (t) = 0, i.e., sensor i had a false alarm, 3) Isi (t) = 1,
i.e., sensor i kept silent while no intruder was present, and 4)
Isi (t) = 0, i.e., sensor i missed the intruder.

Specifically, we set the reward of each correct output as β
(β > 0). When Iai (t) = 1, the reward is βa = β/P (Ai(t) =
1); when Isi (t) = 1, the reward is βs = β/P (Ai(t) =
0). Likewise, we set the punishment of trust value as α
(α > 0). When Isi (t) = 0 happens, we should subtract
αs = α/P (Ai(t) = 1) from the current trust value; when
Iai (t) = 0, the punishment is αa = α/P (Ai(t) = 0).

Denote by tri(t) the trust value of sensor i in slot t. The
trust value of each sensor is updated as follows:

tri (t+ T0) =


tri (t)− αa, if Iai (t) = 0
tri (t)− αs, if Isi (t) = 0
tri (t) + βa, if Iai (t) = 1
tri (t) + βs, if Isi (t) = 1

(9)

A sensor may have an extremely high trust value after
working normally for a long time. It takes long time for



(a) HC-SR501 infrared sensor.
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(b) Experimental results.

Fig. 4. Detection model verification.

TrusDet to locate a faulty sensor if its trust value is high
enough to afford several punishments. Thus, we set an upper
bound TR0 on the trust value. Similarly, a lower bound with
value of 0 is set.

tri (t) =

 TR0, if tri (t) > TR0,
0, if tri (t) < 0,
tri (t) , else.

(10)

A threshold of trust value TRth is set to recognize the faulty
sensors. We introduce mi(t) as the indicator: mi(t) = 1 means
that sensor i is faulty, and mi(t) = 0 otherwise.

mi (t) =

{
1, if tri(t) < TRth,
0, otherwise. (11)

We proceed to calculate the trust weight of each sensor,
that we use in the collective voting in step 2). As sensors
with higher trust value are more reliable, their outputs are
more trustworthy. We do not include the outputs of faulty
sensors in the collective voting unless their trust values become
high enough again. The trust weight of each sensor is updated
according to the following:

ri(t) =

{
tri(t)
TR0

, if mi(t) = 0,

0, if mi(t) = 1.
(12)

IV. PERFORMANCE EVALUATION

In this section, we first conduct a set of experiments to
verify the probabilistic detection model. Then we carry out
experiments to evaluate the performance of TrusDet.

1) Model Verification: We chose HC-SR501 (shown in Fig.
4(a)) infrared sensor for intruder detection. Main component of
HC-SR501 is an infrared ray based LHI778 probe. We conduct
a set of experiments to quantify the detection probability of
HC-SR501 in this section.

Specifically, a person acts as an intruder, walking in the
detection area of the sensor, considering that HC-SR501

does not capture the stationary object. We conduct a set of
experiments in which the distance between the person and the
sensor increases from 0.1m to 3.5m with an increment of 0.2m.
In each experiment, the person stays 3 minutes at the location.
The probability of detection is estimated by the ratio of alarm
duration and total time interval. Obviously, it is easy to decide
R′, within which intruders can be detected deterministically.
We collect all the data when the distance is larger than R′.
To decide the parameter θ, we fix the distance between the
sensor and the person, and vary the orientation direction of
the sensor. θ is found when the sensor detects the person at a
very low probability.

We fit probabilistic detection model by the experiment data
(see Eq. 1). Fig. 4(b) shows the fitting curve, and specific
parameters in the detection model are obtained: λ = 7.010e−
5, β = 8.707, θ=132.7◦, R′ = 1.9m, R = 3.5m. Clearly, the
experiment results fit the detection model well.

2) Performance Verification: In this section, we set k = 3,
δ = 30%, L = 19, and vmax = 10m/s in the experiments.
This leads to d = 1.01m and D(Ω) = 2m (referring to Eq. (4)
and Eq. (2)).

We place 9 sensors evenly in a straight line with distance d
to detect intruders. For those at both ends of the deployment
line that do not have enough neighbors, we only consider the
5 neighboring sensors on one side. We do 10 experiments for
each fault probability, from 0% to 20% with an increment of
1%. In each experiment, the five types of faults are simulated
by the program, which are designed to be evenly distributed.

The following miss detection rate Pmd and false detection
rate Pfd are used to measure the performance of fault detec-
tion: Pmd = |Q−F |

|Q| , Pfd = |F−Q|
|N−Q| , where Q is the set of

actual faulty sensors simulated by program, F is the set of
sensors that are decided as faulty by TrusDet, and N is the
set of all sensors.
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Fig. 5. Miss and false detection rates under different fault probabilities
obtained by TrusDet.

At the beginning of each set of experiments, we ensure that
TrusDet is assigned with an appropriate initial value (this step
can be omitted in application, because newly placed sensors
always have max trust value in practice). Then, an intruder
(i.e., a person) walks in the area 10 times along a random
route, each time being treated as the time slot of an intrusion.
Between two time slots of intrusion, a silent slot (i.e., no in-
trusion happens) is needed. We get 10 groups×10 times = 100
time slots to analyze miss alarm rate and false alarm rate.



We calculate miss alarm rate and false alarm rate in the
following way:

Pma =
Nma

Nslots
× 100%, Pfa =

Nfa

Nslots
× 100%, (13)

where Nma is the number of miss alarm, Nfa is the number
of false alarm of all sensors , Nslots = 100 is the number of
time slots in one experiments. We also perform experiments
without TrusDet as a baseline.

3) Results Analysis: Miss detection rate, false detection
rate, miss alarm rate and false alarm rate are four main
indicators to evaluate the performance of TrusDet. We discuss
these four performance metrics of TrusDet in the following.

False and Miss Detection Rate. Fig. 5 shows false and
miss detection rates in fault detection. We can see that the
false detection rate is 0%, which is satisfactory. However, the
miss detection rate is a bit high. The main reason is that it
is quite difficult for TrusDet to separate the two types of
silent behaviors caused by detection uncertainty and faults,
especially in the case where the fault probability is very low.
This is corroborated by analyzing experiment data, in which
most undetected faulty sensors are those with constant silent
fault. Fortunately, though sensors with constant silent fault are
difficult to be identified, their behaviors are exactly the same
as faulty sensors, i.e., it does not send any alarm messages to
the sink. Therefore, this will not impact the performance of
intrusion detection by other normal sensors.

False and Miss Alarm Rate. Fig. 6(a) shows the false alarm
rates. Without TrusDet, the false alarm rate rapidly increases
with the fault probability of sensors. It can be seen that
TrusDet has zero false alarm rate, which shows a significant
advantage of TrustDet.

Fig. 6(b) shows the miss alarm rates. When fault probability
is low, miss alarm rates are almost the same for TrusDet
and the baseline algorithm. The miss alarm rate obtained by
baseline algorithm decreases when fault probability grows.
One possible reason is that the baseline has a very high false
alarm rate (refer to Fig. 5), which decreases the miss alarm
rate. Note that the miss alarm rates are less than 8% in all
cases for TrusDet, which is acceptable in practice.

V. CONCLUSION

In this paper, we have introduced a novel trust management
based fault-tolerant intrusion detection algorithm (TrusDet) to
improve the performance of intrusion detection system. We
have implemented TrusDet on HC-SR501 infrared sensors and
perform extensive experiments to demonstrate the performance
of TrusDet. It is shown by the experiment results that TrusDet
can recognize most faulty sensors and obtain a quite low false
alarm rate. Hence, TrusDet is able to promote the performance
of intrusion detection system efficiently.
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